Main Article Content

Abstract

In the past couple of years, statistical models have been extensively used in applied areas for analyzing real data sets. However, in numerous situations, the traditional distributions are not flexible enough to cater to different aspects of the real phenomena. For example, (i) in the practice of reliability engineering and biomedical analysis, some distributions provide the best ï¬t to the data having monotonic failure rate function, but fails to provide the best ï¬t to the data having non-monotonic failure rate function, (ii) some statistical distributions provide the best ï¬t for small insurance losses, but fails to provide an adequate ï¬t to large claim size data, and (iii) some distributions do not have closed forms causing difï¬culties in the estimation process. To address the above issues, therefore, several methods have been suggested to improve the flexibility of the classical distributions. In this article, we investigate some of the former methods of generalizing the existing distributions. Further, we propose nineteen new methods of extending the classical distributions to obtain flexible models suitable for modeling data in applied ï¬elds. We also provide certain characterizations of the newly proposed families. Finally, we provide a comparative study of the newly proposed and some other existing well-known models via analyzing three real data sets from three different disciplines such as reliability engineering, medical, and ï¬nancial sciences.

Keywords

Weibull distribution Families of distributions Developments of new families Characterizations Monti Carlo simulation Comparative study

Article Details

How to Cite
Ahmad, Z., Mahmoudi, E., Roozegarz, R., Hamedani, G., & Butt, N. S. (2022). Contributions Towards New Families of Distributions: An Investigation, Further Developments, Characterizations and Comparative Study. Pakistan Journal of Statistics and Operation Research, 18(1), 99-120. https://doi.org/10.18187/pjsor.v18i1.3908

References

  1. Abayomi, A. (2019). Transmuted half normal distribution: Properties and application. Mathematical Theory and Modeling, 9, 14-26.
  2. Abdullahi, U. K., & Ieren, T. G. (2018). On the inferences and applications of transmuted exponential Lomax distribution. International Journal of Advanced Statistics and Probability, 6, 30-36, doi:10.14419/ijasp.v6i1.8129.
  3. Abdul-Moniem, I. B. (2015). Transmuted Burr Type III Distribution. Journal of Statistics: Advances in Theory and Applications, 14, 37-47.
  4. Abdul-Moniem, I. B., & Seham, M. (2015). Transmuted Gompertz Distribution. Computational and Applied Mathematics Journal, 1, 88-96.
  5. Afify, A. Z., Hamedani, G. G., Ghosh, I., & Mead, M. E. (2015). The transmuted Marshall-Olkin Fréchet distribution: Properties and applications. International Journal of Statistics and Probability, 4, 132-148.
  6. Afify, A. Z., Nofal, Z. M., Yousof, H. M., El-Gebaly, Y. M., & Butt, N. S. (2015). The transmuted Weibull-Lomax distribution: Properties and application. Pak. j. stat. oper. res., 11, 135-152, doi:10.18187/pjsor.v11i1.956.
  7. Afify, A. Z., Yousof, H. M., Butt, N. S., & Hamedani, G. G. (2016). The transmuted Weibull-Pareto distribution. Pak. J. Statist., 32, 183-206.
  8. Ahmad, A., Ahmad, S. P., & Ahmad, A. (2014). Transmuted inverse Rayleigh distribution: A generalization of the inverse Rayleigh distribution. Mathematical Theory and Modeling, 4, 90-98.
  9. Ahmad, A., Ahmad, S. P., & Ahmed, A. (2015). Characterization and Estimation of Transmuted Rayleigh Distribution. Journal of Statistics Applications & Probability, 4, 315-321, doi:10.12785/jsap/040216.
  10. Ahmad, K., Ahmad, S. P., & Ahmed, A. (2015). Structural Properties of Transmuted Weibull Distribution. Journal of Modern Applied Statistical Methods, 14, 141-158, doi:10.22237/jmasm/1446351120.
  11. Alizadeh, M., Merovci, F., & Hamedani, G. G. (2017). Generalized transmuted family of distributions: Properties and applications. Hacettepe Journal of Mathematics and Statistics, 46, 645-667, doi:10.15672/HJMS.201610915478.
  12. AL-Kadim, K. A. (2018). Proposed Generalized Formula for Transmuted Distribution. Journal of University of Babylon, 26, 66-74, doi:10.1515/eqc-2017-0027.
  13. AL-Kadim, K. A., & Mohammed, M. H. (2017). The cubic transmuted Weibull distribution. Journal of University of Babylon, 3, 862-876.
  14. Alzaatreh, A., Lee, C., & Famoye, F. (2013). A new method for generating families of continuous distributions. METRON, 71, 63-79, doi:10.1007/s40300-013-0007-y.
  15. Ansari, S. I., & Eledum, H. (2018). An Extension of Pareto Distribution. Journal of Statistics Applications & Probability, 7, 443-455.
  16. Aryal, G. R. (2013). Transmuted Log-Logistic distribution. Journal of Statistics Applications & Probability, 2, 11-20.
  17. Aryal, G. R., & Tsokos, C. P. (2009). On the transmuted extreme value distribution with application. Nonlinear Analysis: Theory, Methods and Applications, 71, 1401-1407, doi:10.1016/j.na.2009.01.168.
  18. Aryal, G. R., & Tsokos, C. P. (2011). Transmuted Weibull distribution: A generalization of the Weibull probability distribution. European Journal of Pure and Applied Mathematics, 4, 89-102.
  19. Ashour, S. K., & Eltehiwy, M. A. (2013a). Transmuted exponentiated Lomax distribution. Australian Journal of Basic and Applied Sciences, 7, 658-667.
  20. Ashour, S. K., & Eltehiwy, M. A. (2013b). Transmuted exponentiated modified Weibull distribution. International Journal of Basic and Applied Sciences, 2, 258-269, doi:10.14419/ijbas.v2i3.1074.
  21. Ashour, S. K., & Eltehiwy, M. A. (2013c). Transmuted Lomax distribution. American Journal of Applied Mathematics and Statistics, 1, 121-127, doi:10.12691/ajams-1-6-3.
  22. Aslam, M., Hussain, Z., & Asghar, Z. (2018). Cubic Transmuted-G Family of Distributions and Its Properties. Stochastics and Quality Control, N/A.
  23. Bakouch, H. S., Jamal, F., Chesneau, C., & Nasir, A. (2017). A new transmuted family of distributions: Properties and estimation with applications. $$.
  24. Balaswamy, S. (2018). Transmuted Half Normal Distribution. International Journal of Scientific Research in Mathematical and Statistical Sciences, 5, 163-170.
  25. Bhatti, F. A., Hamedani, G. G., Sheng, W., & Ahmad, M. (2019). Cubic Rank Transmuted Modified Burr III Pareto Distribution: Development, Properties, Characterizations and Applications. International Journal of Statistics and Probability, 8, 94-112, doi:10.5539/ijsp.v8n1p94.
  26. Bourguignon, M., Ghosh, I., & Cordeiro, G. M. (2016). General Results for the Transmuted Family of Distributions and New Models. Journal of Probability and Statistics, 2016, Article ID 7208425, 12 pages, doi:10.1155/2016/7208425.
  27. Bourguignon, M., Leão, J., Leiva, V., & Santos-Neto, M. (2017). The transmuted Birnbaum-Saunders distribution. Revstat - Statistical Journal, 15, 601-628.
  28. Burr, I. W. (1942). Cumulative frequency functions. Annals of Mathematical Statistics, 13, 215-232, doi:10.1214/aoms/1177731607.
  29. Celik, N. (2018). Some Cubic Rank Transmuted Distributions. Journal of Applied Mathematics, Statistics and Informatics, 14, 27-43.
  30. Chakraborty, S., & Bhati, D. (2016). Transmuted geometric distribution with applications in modelling and regression analysis of count data. Statistics and Operations Research Transactions, 40, 153-176.
  31. Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation, 81, 883-898, doi:10.1080/00949650903530745.
  32. Cordeiro, G. M., Saboor, A., Khan, M. N., Provost, S. B., & Ortega, E. M. M. (2017). The Transmuted Generalized Modified Weibull Distribution. Filomat, 31, 1395-1412, doi:10.2298/FIL1705395C.
  33. Das, K. K. (2015). On Some Generalised Transmuted Distributions. International Journal of Scientific & Engineering Research, 6, 1686-1691.
  34. Elbatal, I. (2013a). Transmuted generalized inverted exponential distribution. Econ. Qual. Control, 28, 125-133, doi:10.1515/eqc-2013-0020.
  35. Elbatal, I. (2013b). Transmuted modified inverse Weibull distribution: A generalization of the modified inverse Weibull probability distribution. International Journal of Mathematical Archive, 4, 117-119.
  36. Elbatal, I., & Aryal, G. (2013). On the transmuted additive Weibull distribution. Australian Journal of Statistics, 42, 117-132, doi:10.17713/ajs.v42i2.160.
  37. Elbatal, I., & Aryal, G. (2015). Transmuted Dagum distribution with applications. Chilean Journal of Statistics, 6, 31-45.
  38. Elbatal, I., & Elgarhy, M. (2013). Transmuted quasi-Lindley distribution: A generalization of the quasi-Lindley distribution. Int. J. Pure Appl. Sci. Technol., 18, 59-70.
  39. Elbatal, I., Asha, G., & Raja, A. V. (2014). Transmuted exponentiated Fréchet distribution: Properties and applications. Journal of Statistics Applications & Probability, 3, 379-394, doi:10.12785/jsap/030309.
  40. Elbatal, I., Diab, L. S., & Alim, N. A. A. (2013). Transmuted generalized linear exponential distribution. International Journal of Computer Applications, 83, 29-37.
  41. Elgarhy, M., Rashed, M., & Shawki, A. W. (2016). Transmuted generalized Lindley distribution. International Journal of Mathematics Trends and Technology, 29, 145-154, doi:10.14445/22315373/IJMTT-V29P520.
  42. Eugene, N., Lee, C., & Famoye, F. (2002). Beta-normal distribution and its applications. Communications in Statistics-Theory and Methods, 31, 497-512.
  43. Fatima, A., & Roohi, A. (2015). Transmuted exponentiated Pareto-I distribution. Pak. J. Statist., 32, 63-80.
  44. Gharaibeh, M. M., & Al-Omari, A. I. (2019). Transmuted Ishita Distribution and Its Applications. Journal of Statistics Applications & Probability, 8, 67-81.
  45. Granzotto, D. C. T., & Louzada, F. (2015). The Transmuted Log-Logistic Distribution: Modeling, Inference, and an Application to a Polled Tabapua Race Time up to First Calving Data. Communications in Statistics - Theory and Methods, 44, 3387-3402, doi:10.1080/03610926.2013.775307.
  46. Granzotto, D. C. T., Louzada, F., & Balakrishnan, N. (2017). Cubic rank transmuted distributions: inferential issues and applications. Journal of Statistical Computation and Simulation, 87, 2760-2778, doi.10.1080/00949655.2017.1344239.
  47. Gupta, R. C., Gupta, P., & Gupta, R. D. (1998). Modeling failure time data by Lehmann alternatives. Communications in Statistics-Theory and Methods, 27, 887-904, doi:10.1080/03610929808832134.
  48. Haq, M. A., Butt, N. S., Usman, R. M., & Fattah, A. A. (2016). Transmuted power function distribution. Gazi University Journal of Science, 29, 177-185.
  49. Hussian, M. A. (2014). Transmuted exponentiated gamma distribution: A generalization of exponentiated gamma probability distribution. Applied Mathematical S ciences, 8, 1297-1310, doi:10.12988/ams.2014.42105.
  50. Iriarte, Y. A., & Astorga, J. M. (2014). Transmuted Maxwell probability distribution. Revista Integración, 32, 211-221.
  51. Iriarte, Y. A., & Astorga, J. M. (2015). A version of transmuted generalized Rayleigh distribution. Revista Integración, 33, 83-95.
  52. Johnson, N. L., Kotz, S., & Balakrishnan, N. (1994). Continuous Univariate Distributions, Vol. 1. New York, USA: John Wiley & Sons.
  53. Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous Univariate Distributions, Vol. 2. New York, USA: John Wiley & Sons.
  54. Khan, M. S., & King, R. (2013). Transmuted modified Weibull distribution: A generalization of the modified Weibull probability distribution. European Journal of Pure and Applied Mathematics., 6, 66-88.
  55. Khan, M. S., & King, R. (2014a). A New Class of Transmuted Inverse Weibull Distribution for Reliability Analysis. American Journal of Mathematical and Management Sciences, 33, 261-286, doi:10.1080/01966324.2014.929989.
  56. Khan, M. S., & King, R. (2014b). Transmuted generalized inverse Weibull distribution. Journal of Applied Statistical Science, 20, 213-230.
  57. Khan, M. S., & King, R. (2015). Transmuted Modified Inverse Rayleigh Distribution. Austrian Journal of Statistics, 44, 17-29, doi:10.17713/ajs.v44i3.21.
  58. Khan, M. S., King, R., & Hudson, I. L. (2014). Characterizations of the transmuted inverse Weibull distribution. ANZIAM J., 55, C197-C217.
  59. Khan, M. S., King, R., & Hudson, I. L. (2015). A new three parameter transmuted Chen lifetime distribution with application. Journal of Applied Statistical Sciences, 21, 239-259.
  60. Khan, M. S., King, R., & Hudson, I. L. (2016a). Transmuted Gompertz distribution: Properties and estimation. Pak. J. Statist., 32, 161-182.
  61. Khan, M. S., King, R., & Hudson, I. L. (2016b). Transmuted Kumaraswamy distribution. Statistics in Transition, 17, 1-28, doi:10.21307/stattrans-2016-013.
  62. Khan, M. S., King, R., & Hudson, I. L. (2017a). Transmuted generalized exponential distribution: A generalization of the exponential distribution with applications to survival data. Communications in Statistics - Simulation and Computation, 46, 4377-4398 , doi:10.1080/03610918.2015.1118503.
  63. Khan, M. S., King, R., & Hudson, I. L. (2017b). Transmuted new generalized inverse Weibull distribution. Pak. j. stat. oper. res., 13, 277-296, doi:10.18187/pjsor.v13i2.1523.
  64. Khan, M. S., King, R., & Hudson, I. L. (2017c). Transmuted Weibull distribution: Properties and estimation. Communications in Statistics - Theory and Methods, 46, 5394-5418, doi:10.1080/03610926.2015.1100744.
  65. Khan, M. S., King, R., & Hudson, I. L. (2018). Transmuted Modified Weibull distribution: Properties and Application. European Journal of Pure and Applied Mathematics, 11, 362-374.
  66. Khan, M. S., King, R., & Hudson, I. L. (2019). Transmuted Burr Type X Distribution with Covariates Regression Modeling to Analyze Reliability Data. American Journal of Mathematical and Management Sciences, doi, 10.1080/01966324.2019.1605320.
  67. Kumaraswamy, P. (1980). A Generalized probability density-function for double-bounded random-processes. Journal of Hydrology, 462, 79-88.
  68. Lucena, S. E. F., Silva, A. H. A., & Cordeiro, G. M. (2015). The transmuted generalized gamma distribution: Properties and application. Journal of Data Science, 13, 409-420.
  69. Luguterah, A., & Nasiru, S. (2015). Transmuted exponential Pareto distribution. Far East Journal of Theoretical Statistics, 50, 31-49.
  70. Mahmoud, M. R., & Mandouh, R. M. (2013). On the transmuted Fréchet distribution. Journal of Applied Sciences Research, 9, 5553-5561.
  71. Mansour, M. M., & Mohamed, S. M. (2015). A new generalized of transmuted Lindley distribution. Applied Mathematical Sciences, 9, 2729-2748, doi:10.12988/ams.2015.52158.
  72. Mansour, M. M., Elrazik, E. M. B., Hamed, M. S., & Mohamed, S. M. (2015). A new transmuted additive Weibull distribution: Based on a new method for adding a parameter to a family of distribution. International Journal of Applied Mathematical Sciences, 8, 31-54.
  73. Marshall, A. W., & Olkin, I. (1997). A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika, 84, 641-652, doi:10.1093/biomet/84.3.641.
  74. Merovci, F. (2013a). Transmuted exponentiated exponential distribution. Mathematical Sciences And Applications E-Notes, 1, 112-122.
  75. Merovci, F. (2013b). Transmuted Lindley distribution. Int. J. Open Problems Comput. Math., 6, 63-72.
  76. Merovci, F. (2013c). Transmuted Rayleigh Distribution. Austrian Journal of Statistics, 42, 21-31, doi:10.17713/ajs.v42i1.163.
  77. Merovci, F. (2014). Transmuted Generalized Rayleigh Distribution. Journal of Statistics Applications & Probability, 3, 9-20, doi:10.18576/jsap/030102.
  78. Merovci, F., & Puka, L. (2014). Transmuted Pareto Distribution. ProbStat Forum, 7, 1-11.
  79. Merovci, F., Alizadeh, M., & Hamedani, G. G. (2016). Another Generalized Transmuted Family of Distributions: Properties and Applications. Austrian Journal of Statistics, 45, 71-93, doi:10.17713/ajs.v45i3.109.
  80. Merovci, F., Elbatal, I., & Ahmed, A. (2014). Transmuted generalized inverse Weibull distribution. Australian Journal of Statistics, 43, 119-131.
  81. Nofal, Z. M., Afify, A. Z., Yousof, H. M., Granzotto, D. C. T., & Louzada, F. (2018). The Transmuted Exponentiated Additive Weibull Distribution: Properties and Applications. Journal of Modern Applied Statistical Methods, 17(1), eP2526. doi, 10.22237/jmasm/1525133340.
  82. Okorie, I. E., & Akpanta, A. C. (2019). A Note on the Transmuted Generalized Inverted Exponential Distribution with Application to Reliability Data. Thailand Statistician, 17, 118-124.
  83. Otiniano, C. E. G., de Paiva, B. S., Daniele, S. B., & Neto, M. (2019). The transmuted generalized extreme value distribution: properties and application. Communications for Statistical Applications and Methods, 26, 239-259.
  84. Owoloko, E. A., Oguntunde, P. E., & Adejumo, A. O. (2015). Performance rating of the transmuted exponential distribution: An analytical approach. Springer Plus, 4, 8-18, doi:10.1186/s40064-015-1590-1596.
  85. Pearson, K. (1895). Contributions to the mathematical theory of evolution, II: Skew variation in homogeneous material. Philosophical Transactions of the Royal Society, 186, 343-414, doi:10.1098/rsta.1895.0010.
  86. Pearson, K. (1901). Mathematical contributions to the theory of evolution, X: Supplement to a memoir on skew variation. Philosophical Transactions of the Royal Society, 197, 443-459, doi:10.1098/rsta.1901.0023.
  87. Pearson, K. (1916). Mathematical contributions to the theory of evolution, XIX: Second supplement to a memoir on skew variation. Philosophical Transactions of the Royal Society, 216, 429-457, doi:10.1098/rsta.1916.0009.
  88. PoboÄíková, I., SedliaÄková, Z., & Michalková, M. (2018). Transmuted Weibull distribution and its applications. MATEC Web of Conferences, 157, 1-11, doi:10.1051/matecconf/201815708007.
  89. Rahman, M. M., Al-Zahrani, B., & Shahbaz, M. Q. (2018a). A General Transmuted Family of Distributions. Pak. j. stat. oper. res., 14, 451-469, doi:10.18187/pjsor.v14i2.2334.
  90. Rahman, M. M., Al-Zahrani, B., & Shahbaz, M. Q. (2018b). Cubic Transmuted Pareto Distribution. Annals of Data Science, doi, 10.1007/s40745-018-0178-8.
  91. Rahman, M. M., Al-Zahrani, B., & Shahbaz, M. Q. (2018c). New General Transmuted Family of Distributions with Applications. Pak J Stat Oper Res, 14, 807-829, doi:10.18187/pjsor.v14i4.2655.
  92. Rahman, M. M., Al-Zahrani, B., & Shahbaz, M. Q. (2019). Cubic Transmuted Weibull Distribution: Properties and Applications. Annals of Data Science, doi, 10.1007/s40745-018-00188-y.
  93. Rahman, M. M., Al-Zahrani, B., Shahbaz, S. H., & Shahbaz, M. Q. (2019). Cubic Transmuted Uniform Distribution: An Alternative to Beta and Kumaraswamy Distributions. European Journal of Pure and Applied Mathematics, 12, 1106-1121.
  94. Roy, M. K. (2012). Fundamentals of Probability & Probability Distributions. Chittagong: Romax Publications.
  95. Samuel, A. F. (2019). On the Performance of Transmuted Logistic Distribution: Statistical Properties and Application. Budapest International Research in Exact Sciences (BirEx) Journal, 1, 26-34.
  96. Shahzad, M. N., & Asghar, Z. (2016). Transmuted Dagum distribution: A more flexible and broad shaped hazard function model. Hacettepe Journal of Mathematics and Statistics, 45, 227,244.
  97. Shaw, W. T., & Buckley, I. R. C. (2007). The alchemy of probability distributions: beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map.
  98. Tadikamalla, & Pandu, R. (1980). A Look at the Burr and Related Distributions. International Statistical Review, 48, 337-344.
  99. Tahir, M. H., & Cordeiro, G. M. (2016). Compounding of distributions: a survey and new generalized classes. Journal of Statistical Distributions and Applications, 3, 1-35, doi:10.1186/s40488-016-0052-1.
  100. Tian, Y., Tian, M., & Zhu, Q. (2014). Transmuted linear exponential distribution: A new generalization of the linear exponential distribution. Communications in Statistics - Simulation and Computation, 43, 2661-2671, doi:10.1080/03610918.2013.763978.
  101. Vardhan, R. V., & Balaswamy, S. (2016). Transmuted new modified Weibull distribution. Mathematical Sciences and Applications E-Notes, 4, 125-135.

Most read articles by the same author(s)

> >>