Main Article Content
Abstract
A new G family of probability distributions called the type I quasi Lambert family is defined and applied for modeling real lifetime data. Some new bivariate type G families using "Farlie-Gumbel-Morgenstern copula", "modified Farlie-Gumbel-Morgenstern copula", "Clayton copula" and "Renyi's entropy copula" are derived. Three characterizations of the new family are presented. Some of its statistical properties are derived and studied. The maximum likelihood estimation, maximum product spacing estimation, least squares estimation, Anderson-Darling estimation and Cramer-von Mises estimation methods are used for estimating the unknown parameters. Graphical assessments under the five different estimation methods are introduced. Based on these assessments, all estimation methods perform well. Finally, an application to illustrate the importance and flexibility of the new family is proposed.
Keywords
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following License
CC BY: This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
References
- Alizadeh, M., Ghosh, I., Yousof, H. M., Rasekhi, M., & Hamedani, G. G. (2017). The generalized odd generalized exponential family of distributions: properties, characterizations and applications. Journal of Data Science, 15(3), 443-465.
- Alizadeh, M., Rasekhi, M., Yousof, H. M. and Hamedani G. G. (2018). The transmuted Weibull G family of distributions. Hacettepe Journal of Mathematics and Statistics, 47, 1-20.
- Aryal, G. R., & Yousof, H. M. (2017). The exponentiated generalized-G Poisson family of distributions. Stochastics and Quality Control, 32(1), 7-23.
- Bebbington, M., Lai, C. D. and Zitikis, R. (2007). A flexible Weibull extension. Reliability Engineering & System Safety, 92(6), 719-726.
- Brito, E., Cordeiro, G. M., Yousof, H. M., Alizadeh, M. & Silva, G. O. (2017). Topp-Leone odd log-logistic family of distributions, Journal of Statistical Computation and Simulation, 87(15), 3040-3058.
- Cheng, R. C. H. and Amin, N. A. K. (1979). Maximum product of spacings estimation with application to the lognormal distribution. Math Report, 791.
- Cordeiro, G. M., Ortega, E. M.and Nadarajah, S. (2010). The Kumaraswamy Weibull distribution with application to failure data. Journal of the Franklin Institute, 347(8), 1399-1429.
- Cordeiro, G. M., Yousof, H. M., Ramires, T. G. & Ortega, E. M. M. (2017b). The Burr XII system of densities: properties, regression model and applications. Journal of Statistical Computation and Simulation, 88(3), 432-456.
- Famoye, F., Lee, C. and Olumolade, O. (2005). The beta-Weibull distribution. Journal of Statistical Theory and Applications, 4(2), 121-136.
- Farlie, D. J. G. (1960) The performance of some correlation coefficients for a general bivariate distribution. Biometrika, 47, 307-323.
- Fréchet, M. (1927). Sur la loi de probabilité de lécart maximum. Ann. de la Soc. polonaisede Math, 6, 93-116.
- Galambos, J. and Kotz, S. Characterizations of probability distributions. A unified approach with emphasis on exponential and related models, Lecture Notes in Mathematics, p.675. Springer, Berlin (1978).
- Glänzel, W., A characterization theorem based on truncated moments and its application to some distribution families, Mathematical Statistics and Probability Theory (Bad Tatzmannsdorf, 1986), Vol. B, Reidel, Dordrecht, (1987), 75-84.
- Glänzel, W., Some consequences of a characterization theorem based on truncated moments, Statistics: A Journal of Theoretical and Applied Statistics, 21(4), (1990), 613-618.
- Glänzel, W, Telcs, A, Schubert, A. Characterization by truncated moments and its application to Pearson-type distributions, Z. Wahrsch. Verw. Gebiete 66, 173-182 (1984).
- Glänzel, W. and Hamedani, G.G. Characterizations of the univariate distributions, Studia Scien. Math. hung., 37, 83-118 (2001).
- Gleaton, J. U. and Lynch, J. D. (2006). Properties of generalized loglogistic families of lifetime distributions. Journal of Probability and Statistical Science, 4(1), 51-64.
- Gumbel, E. J. (1961). Bivariate logistic distributions. Journal of the American Statistical Association, 56(294), 335-349.
- Gumbel, E. J. (1960) Bivariate exponential distributions. Journ. Amer. Statist. Assoc., 55, 698-707.
- Gupta, R. C., Gupta, P. L. and Gupta, R. D. (1998). Modeling failure time data by Lehman alternatives. Communications in Statistics-Theory and methods, 27(4), 887-904.
- Hamedani, G.G., On certain generalized gamma convolution distributions II , Technical Report, No. 484, MSCS, Marquette University, 2013.
- Hamedani, G. G., Altun, E., Korkmaz, M. C., Yousof, H. M., & Butt, N. S. (2018). A new extended G family of continuous distributions with mathematical properties, characterizations and regression modeling. Pakistan Journal of Statistics and Operation Research, 737-758.
- Hamedani, G. G., Rasekhi, M., Najibi, S., Yousof, H. M., & Alizadeh, M. (2019). Type II general exponential class of distributions. Pakistan Journal of Statistics and Operation Research, 503-523.
- Hamedani G. G. Yousof, H. M., Rasekhi, M., Alizadeh, M. & Najibi, S. M. (2017). Type I general exponential class of distributions. Pak. J. Stat. Oper. Res., XIV(1), 39-55.
- Johnson, N. L. and Kotz, S. (1975) On some generalized Farlie-Gumbel-Morgenstern distributions. Commun. Stat. Theory, 4, 415-427.
- Johnson, N. L. and Kotz, S. (1977) On some generalized Farlie-Gumbel-Morgenstern distributions- II: Regression, correlation and further generalizations. Commun. Stat.Theory, 6, 485-496.
- Kim, J.H. and Jeon, Y. Credibility theory based on trimming, Insur. Math. Econ. 53(1), 36-47 (2013).
- Karamikabir, H., Afshari, M., Yousof, H. M., Alizadeh, M. and Hamedani, G. (2020). The Weibull Topp-Leone generated family of gistributions: statistical properties and applications. Journal of The Iranian Statistical Society, 19(1), 121-161.
- Korkmaz, M. C., Alizadeh, M., Yousof, H. M. and Butt, N. S. (2018a). The generalized odd Weibull generated family of distributions: statistical properties and applications. Pak. J. Stat. Oper. Res., 14(3), 541-556.
- Korkmaz, M. C., Altun, E., Yousof, H. M. and Hamedani G. G. (2019). The odd power Lindley generator of probability distributions: properties, characterizations and regression modeling, International Journal of Statistics and Probability, 8(2), 70-89.
- Korkmaz, M. C., Yousof, H. M. and Hamedani, G. G. (2018b). The exponential Lindley odd log-logistic-G family: properties, characterizations and applications. Journal of Statistical Theory and Applications, 17(3), 554-571.
- Korkmaz, M. C., Yousof, H. M., Hamedani G. G. and Ali, M. M. (2018c). The Marshall-Olkin generalized-G Poisson family of distributions, Pakistan Journal of Statistics, 34(3), 251-267.
- Lai, C. D., Xie, M. and Murthy, D. N. P. (2003). A modified Weibull distribution. IEEE Transactions on reliability, 52(1), 33-37.
- Lee, C., Famoye, F. and Olumolade, O. (2007). Beta-Weibull distribution: some properties and applications to censored data. Journal of Modern Applied Statistical Methods, 6, 17.
- Lucena, S. E., Silva, A. H. A. and Cordeiro, G. M. (2015). The transmuted generalized gamma distribution: Properties and application. Journal of Data Science, 13(1), 187-206.
- Merovci, F., Alizadeh, M., Yousof, H. M. and Hamedani G. G. (2017). The exponentiated transmuted-G family of distributions: theory and applications, Communications in Statistics-Theory and Methods, 46 (21), 10800-10822.
- Morgenstern, D. (1956). Einfache beispiele zweidimensionaler verteilungen. Mitteilingsblatt fur Mathematische Statistik, 8, 234-235.
- Nascimento, A. D. C., Silva, K. F., Cordeiro, G. M., Alizadeh, M. and Yousof, H. M. (2019). The odd Nadarajah-Haghighi family of distributions: properties and applications. Studia Scientiarum Mathematicarum Hungarica, 56(2), 1-26.
- Pougaza, D. B. and Djafari, M. A. (2011). Maximum entropies copulas. Proceedings of the 30th international workshop on Bayesian inference and maximum Entropy methods in Science and Engineering, 329-336.
- Rezaei, S., Nadarajah, S., and Tahghighnia, N. A (2013). New three-parameter lifetime distribution, Statistics, 47, 835-860.
- Rodriguez-Lallena, J. A. and Ubeda-Flores, M. (2004). A new class of bivariate copulas. Statistics and Probability Letters, 66, 315-25. Salman S., M. and Prayoto, S. (1999). Total time on test plot analysis for mechanical components of the RSG-GAS reactor. Atom Indones, 25(2), 155-61.
- Topp, C. W. and Leone, F. C. (1955). A family of J-shaped frequency functions. Journal of the American Statistical Association, 50(269), 209-219.
- Yousof, H. M., Afify, A. Z., Alizadeh, M., Butt, N. S., Hamedani, G. G. and Ali, M. M. (2015). The transmuted exponentiated generalized-G family of distributions. Pak.j.stat.oper.res., 11, 441-464.
- Yousof, H. M., Afify, A. Z., Alizadeh, M., Hamedani G. G., Jahanshahi, S. M. A. and Ghosh, I. (2018a). The generalized transmuted Poisson-G family of Distributions. Pak. J. Stat. Oper. Res., 14 (4), 759-779.
- Yousof, H. M., Afify, A. Z., Alizadeh, M., Nadarajah, S., Aryal, G. R. and Hamedani, G. G. (2018b). The Marshall-Olkin generalized-G family of distributions with Applications, STATISTICA, 78(3), 273- 295.
- Yousof, H. M., Alizadeh, M., Jahanshahi and, S. M. A., Ramires, T. G., Ghosh, I. and Hamedani G. G. (2017a). The transmuted Topp-Leone G family of distributions: theory, characterizations and applications, Journal of Data Science. 15, 723-740.
- Yousof, H. M., Altun, E., Ramires, T. G., Alizadeh, M. and Rasekhi, M. (2018c). A new family of distributions with properties, regression models and applications, Journal of Statistics and Management Systems, 21(1), 163-188.
- Yousof, H. M., Rasekhi, M., Afify, A. Z., Alizadeh, M., Ghosh, I. and Hamedani G. G. (2017b). The beta Weibull-G family of distributions: theory, characterizations and applications, Pakistan Journal of Statistics, 33, 95-116.
- Yousof, H. M., Majumder, M., Jahanshahi, S. M. A., Ali, M. M. and Hamedani G. G. (2018d). A new Weibull class of distributions: theory, characterizations and applications, Journal of Statistical Research of Iran, 15, 45-83.
- Yousof, H., Mansoor, M., Alizadeh, M., Afify, A. and Ghosh, I. (2020). The Weibull-G Poisson family for analyzing lifetime data. Pakistan Journal of Statistics and Operation Research, 131-148.