Main Article Content

Abstract

A new G family of probability distributions called the type I quasi Lambert family is defined and applied for modeling real lifetime data. Some new bivariate type G families using "Farlie-Gumbel-Morgenstern copula", "modified Farlie-Gumbel-Morgenstern copula", "Clayton copula" and "Renyi's entropy copula" are derived. Three characterizations of the new family are presented. Some of its statistical properties are derived and studied. The maximum likelihood estimation, maximum product spacing estimation, least squares estimation, Anderson-Darling estimation and Cramer-von Mises estimation methods are used for estimating the unknown parameters. Graphical assessments under the five different estimation methods are introduced. Based on these assessments, all estimation methods perform well. Finally, an application to illustrate the importance and flexibility of the new family is proposed.

Keywords

Characterizations Copula Maximum Product Spacing Maximum Likelihood Anderson-Darling Estimation

Article Details

How to Cite
Hamedani, G. G., Korkmaz, M. C., Butt, N. S., & Yousof, H. M. (2021). The Type I Quasi Lambert Family . Pakistan Journal of Statistics and Operation Research, 17(3), 545-558. https://doi.org/10.18187/pjsor.v17i3.3562

References

  1. Alizadeh, M., Ghosh, I., Yousof, H. M., Rasekhi, M., & Hamedani, G. G. (2017). The generalized odd generalized exponential family of distributions: properties, characterizations and applications. Journal of Data Science, 15(3), 443-465. DOI: https://doi.org/10.6339/JDS.201707_15(3).0005
  2. Alizadeh, M., Rasekhi, M., Yousof, H. M. and Hamedani G. G. (2018). The transmuted Weibull G family of distributions. Hacettepe Journal of Mathematics and Statistics, 47, 1-20. DOI: https://doi.org/10.15672/HJMS.2017.440
  3. Aryal, G. R., & Yousof, H. M. (2017). The exponentiated generalized-G Poisson family of distributions. Stochastics and Quality Control, 32(1), 7-23. DOI: https://doi.org/10.1515/eqc-2017-0004
  4. Bebbington, M., Lai, C. D. and Zitikis, R. (2007). A flexible Weibull extension. Reliability Engineering & System Safety, 92(6), 719-726. DOI: https://doi.org/10.1016/j.ress.2006.03.004
  5. Brito, E., Cordeiro, G. M., Yousof, H. M., Alizadeh, M. & Silva, G. O. (2017). Topp-Leone odd log-logistic family of distributions, Journal of Statistical Computation and Simulation, 87(15), 3040-3058. DOI: https://doi.org/10.1080/00949655.2017.1351972
  6. Cheng, R. C. H. and Amin, N. A. K. (1979). Maximum product of spacings estimation with application to the lognormal distribution. Math Report, 791.
  7. Cordeiro, G. M., Ortega, E. M.and Nadarajah, S. (2010). The Kumaraswamy Weibull distribution with application to failure data. Journal of the Franklin Institute, 347(8), 1399-1429. DOI: https://doi.org/10.1016/j.jfranklin.2010.06.010
  8. Cordeiro, G. M., Yousof, H. M., Ramires, T. G. & Ortega, E. M. M. (2017b). The Burr XII system of densities: properties, regression model and applications. Journal of Statistical Computation and Simulation, 88(3), 432-456. DOI: https://doi.org/10.1080/00949655.2017.1392524
  9. Famoye, F., Lee, C. and Olumolade, O. (2005). The beta-Weibull distribution. Journal of Statistical Theory and Applications, 4(2), 121-136.
  10. Farlie, D. J. G. (1960) The performance of some correlation coefficients for a general bivariate distribution. Biometrika, 47, 307-323. DOI: https://doi.org/10.1093/biomet/47.3-4.307
  11. Fréchet, M. (1927). Sur la loi de probabilité de lécart maximum. Ann. de la Soc. polonaisede Math, 6, 93-116.
  12. Galambos, J. and Kotz, S. Characterizations of probability distributions. A unified approach with emphasis on exponential and related models, Lecture Notes in Mathematics, p.675. Springer, Berlin (1978).
  13. Glänzel, W., A characterization theorem based on truncated moments and its application to some distribution families, Mathematical Statistics and Probability Theory (Bad Tatzmannsdorf, 1986), Vol. B, Reidel, Dordrecht, (1987), 75-84. DOI: https://doi.org/10.1007/978-94-009-3965-3_8
  14. Glänzel, W., Some consequences of a characterization theorem based on truncated moments, Statistics: A Journal of Theoretical and Applied Statistics, 21(4), (1990), 613-618. DOI: https://doi.org/10.1080/02331889008802273
  15. Glänzel, W, Telcs, A, Schubert, A. Characterization by truncated moments and its application to Pearson-type distributions, Z. Wahrsch. Verw. Gebiete 66, 173-182 (1984). DOI: https://doi.org/10.1007/BF00531527
  16. Glänzel, W. and Hamedani, G.G. Characterizations of the univariate distributions, Studia Scien. Math. hung., 37, 83-118 (2001). DOI: https://doi.org/10.1556/sscmath.37.2001.1-2.5
  17. Gleaton, J. U. and Lynch, J. D. (2006). Properties of generalized loglogistic families of lifetime distributions. Journal of Probability and Statistical Science, 4(1), 51-64.
  18. Gumbel, E. J. (1961). Bivariate logistic distributions. Journal of the American Statistical Association, 56(294), 335-349. DOI: https://doi.org/10.1080/01621459.1961.10482117
  19. Gumbel, E. J. (1960) Bivariate exponential distributions. Journ. Amer. Statist. Assoc., 55, 698-707. DOI: https://doi.org/10.1080/01621459.1960.10483368
  20. Gupta, R. C., Gupta, P. L. and Gupta, R. D. (1998). Modeling failure time data by Lehman alternatives. Communications in Statistics-Theory and methods, 27(4), 887-904. DOI: https://doi.org/10.1080/03610929808832134
  21. Hamedani, G.G., On certain generalized gamma convolution distributions II , Technical Report, No. 484, MSCS, Marquette University, 2013.
  22. Hamedani, G. G., Altun, E., Korkmaz, M. C., Yousof, H. M., & Butt, N. S. (2018). A new extended G family of continuous distributions with mathematical properties, characterizations and regression modeling. Pakistan Journal of Statistics and Operation Research, 737-758. DOI: https://doi.org/10.18187/pjsor.v14i3.2484
  23. Hamedani, G. G., Rasekhi, M., Najibi, S., Yousof, H. M., & Alizadeh, M. (2019). Type II general exponential class of distributions. Pakistan Journal of Statistics and Operation Research, 503-523. DOI: https://doi.org/10.18187/pjsor.v15i2.1699
  24. Hamedani G. G. Yousof, H. M., Rasekhi, M., Alizadeh, M. & Najibi, S. M. (2017). Type I general exponential class of distributions. Pak. J. Stat. Oper. Res., XIV(1), 39-55. DOI: https://doi.org/10.18187/pjsor.v14i1.2193
  25. Johnson, N. L. and Kotz, S. (1975) On some generalized Farlie-Gumbel-Morgenstern distributions. Commun. Stat. Theory, 4, 415-427. DOI: https://doi.org/10.1080/03610927508827258
  26. Johnson, N. L. and Kotz, S. (1977) On some generalized Farlie-Gumbel-Morgenstern distributions- II: Regression, correlation and further generalizations. Commun. Stat.Theory, 6, 485-496. DOI: https://doi.org/10.1080/03610927708827509
  27. Kim, J.H. and Jeon, Y. Credibility theory based on trimming, Insur. Math. Econ. 53(1), 36-47 (2013). DOI: https://doi.org/10.1016/j.insmatheco.2013.03.012
  28. Karamikabir, H., Afshari, M., Yousof, H. M., Alizadeh, M. and Hamedani, G. (2020). The Weibull Topp-Leone generated family of gistributions: statistical properties and applications. Journal of The Iranian Statistical Society, 19(1), 121-161. DOI: https://doi.org/10.29252/jirss.19.1.121
  29. Korkmaz, M. C., Alizadeh, M., Yousof, H. M. and Butt, N. S. (2018a). The generalized odd Weibull generated family of distributions: statistical properties and applications. Pak. J. Stat. Oper. Res., 14(3), 541-556. DOI: https://doi.org/10.18187/pjsor.v14i3.2598
  30. Korkmaz, M. C., Altun, E., Yousof, H. M. and Hamedani G. G. (2019). The odd power Lindley generator of probability distributions: properties, characterizations and regression modeling, International Journal of Statistics and Probability, 8(2), 70-89. DOI: https://doi.org/10.5539/ijsp.v8n2p70
  31. Korkmaz, M. C., Yousof, H. M. and Hamedani, G. G. (2018b). The exponential Lindley odd log-logistic-G family: properties, characterizations and applications. Journal of Statistical Theory and Applications, 17(3), 554-571. DOI: https://doi.org/10.2991/jsta.2018.17.3.10
  32. Korkmaz, M. C., Yousof, H. M., Hamedani G. G. and Ali, M. M. (2018c). The Marshall-Olkin generalized-G Poisson family of distributions, Pakistan Journal of Statistics, 34(3), 251-267.
  33. Lai, C. D., Xie, M. and Murthy, D. N. P. (2003). A modified Weibull distribution. IEEE Transactions on reliability, 52(1), 33-37. DOI: https://doi.org/10.1109/TR.2002.805788
  34. Lee, C., Famoye, F. and Olumolade, O. (2007). Beta-Weibull distribution: some properties and applications to censored data. Journal of Modern Applied Statistical Methods, 6, 17. DOI: https://doi.org/10.22237/jmasm/1177992960
  35. Lucena, S. E., Silva, A. H. A. and Cordeiro, G. M. (2015). The transmuted generalized gamma distribution: Properties and application. Journal of Data Science, 13(1), 187-206. DOI: https://doi.org/10.6339/JDS.201501_13(1).0010
  36. Merovci, F., Alizadeh, M., Yousof, H. M. and Hamedani G. G. (2017). The exponentiated transmuted-G family of distributions: theory and applications, Communications in Statistics-Theory and Methods, 46 (21), 10800-10822. DOI: https://doi.org/10.1080/03610926.2016.1248782
  37. Morgenstern, D. (1956). Einfache beispiele zweidimensionaler verteilungen. Mitteilingsblatt fur Mathematische Statistik, 8, 234-235.
  38. Nascimento, A. D. C., Silva, K. F., Cordeiro, G. M., Alizadeh, M. and Yousof, H. M. (2019). The odd Nadarajah-Haghighi family of distributions: properties and applications. Studia Scientiarum Mathematicarum Hungarica, 56(2), 1-26. DOI: https://doi.org/10.1556/012.2019.56.2.1416
  39. Pougaza, D. B. and Djafari, M. A. (2011). Maximum entropies copulas. Proceedings of the 30th international workshop on Bayesian inference and maximum Entropy methods in Science and Engineering, 329-336. DOI: https://doi.org/10.1063/1.3573634
  40. Rezaei, S., Nadarajah, S., and Tahghighnia, N. A (2013). New three-parameter lifetime distribution, Statistics, 47, 835-860. DOI: https://doi.org/10.1080/02331888.2011.627587
  41. Rodriguez-Lallena, J. A. and Ubeda-Flores, M. (2004). A new class of bivariate copulas. Statistics and Probability Letters, 66, 315-25. Salman S., M. and Prayoto, S. (1999). Total time on test plot analysis for mechanical components of the RSG-GAS reactor. Atom Indones, 25(2), 155-61. DOI: https://doi.org/10.1016/j.spl.2003.09.010
  42. Topp, C. W. and Leone, F. C. (1955). A family of J-shaped frequency functions. Journal of the American Statistical Association, 50(269), 209-219. DOI: https://doi.org/10.1080/01621459.1955.10501259
  43. Yousof, H. M., Afify, A. Z., Alizadeh, M., Butt, N. S., Hamedani, G. G. and Ali, M. M. (2015). The transmuted exponentiated generalized-G family of distributions. Pak.j.stat.oper.res., 11, 441-464. DOI: https://doi.org/10.18187/pjsor.v11i4.1164
  44. Yousof, H. M., Afify, A. Z., Alizadeh, M., Hamedani G. G., Jahanshahi, S. M. A. and Ghosh, I. (2018a). The generalized transmuted Poisson-G family of Distributions. Pak. J. Stat. Oper. Res., 14 (4), 759-779. DOI: https://doi.org/10.18187/pjsor.v14i4.2527
  45. Yousof, H. M., Afify, A. Z., Alizadeh, M., Nadarajah, S., Aryal, G. R. and Hamedani, G. G. (2018b). The Marshall-Olkin generalized-G family of distributions with Applications, STATISTICA, 78(3), 273- 295.
  46. Yousof, H. M., Alizadeh, M., Jahanshahi and, S. M. A., Ramires, T. G., Ghosh, I. and Hamedani G. G. (2017a). The transmuted Topp-Leone G family of distributions: theory, characterizations and applications, Journal of Data Science. 15, 723-740. DOI: https://doi.org/10.6339/JDS.201710_15(4).00008
  47. Yousof, H. M., Altun, E., Ramires, T. G., Alizadeh, M. and Rasekhi, M. (2018c). A new family of distributions with properties, regression models and applications, Journal of Statistics and Management Systems, 21(1), 163-188. DOI: https://doi.org/10.1080/09720510.2017.1411028
  48. Yousof, H. M., Rasekhi, M., Afify, A. Z., Alizadeh, M., Ghosh, I. and Hamedani G. G. (2017b). The beta Weibull-G family of distributions: theory, characterizations and applications, Pakistan Journal of Statistics, 33, 95-116.
  49. Yousof, H. M., Majumder, M., Jahanshahi, S. M. A., Ali, M. M. and Hamedani G. G. (2018d). A new Weibull class of distributions: theory, characterizations and applications, Journal of Statistical Research of Iran, 15, 45-83. DOI: https://doi.org/10.29252/jsri.15.1.45
  50. Yousof, H., Mansoor, M., Alizadeh, M., Afify, A. and Ghosh, I. (2020). The Weibull-G Poisson family for analyzing lifetime data. Pakistan Journal of Statistics and Operation Research, 131-148. DOI: https://doi.org/10.18187/pjsor.v16i1.2840