Main Article Content
Abstract
In this paper, we introduce the Marshall–Olkin Pareto type-I (MOPTI) distribution. Structural properties of the MOPTI distribution including the quantile function, mean residual life, and a new theorem for strength-stress measure are introduced. Five methods of estimation for the MOPTI parameters based on complete samples are presented. Furthermore, we explore the estimation of the MOPTI parameters under type-I and type-II censoring. Two Monte Carlo simulation studies are conducted to evaluate the performance of the estimation methods under complete and censored samples. A real-life data set is used to validate the proposed methods.
Keywords
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following License
CC BY: This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
References
-
Abouammoh, A. M. and Alshingiti, A. M. (2009). Reliability estimation of generalized inverted exponential distribution. Journal of Statistical Computation and Simulation, 79, 1301- 1315.
Afify, A. Z., Al-Mofleh, H., Aljohani, H. M. and Cordeiro, G. M. (2022). The Marshall–Olkin–Weibull-H family: estimation, simulations, and applications to COVID-19 data. Journal of King Saud University-Science, 34, p.102115.
Afify, A. Z., Kumar, D. and Elbatal, I. (2020). Marshall–Olkin power generalized Weibull distribution with applications in engineering and medicine. Journal of Statistical Theory and Applications, 19, 223-237.
Al-Babtain, A. A., Sherwani, R. A., Afify, A. Z., Aidi, K., Nasir, M. A., Jamal, F. and Saboor, A. (2021). The extended Burr-R class: properties, applications and modified test for censored data. AIMS Mathematics, 6, 2912-2931.
Ali, M., Pal, M. and Woo, J. (2010). Estimation of Pr(Y
Babayi, S., Khorrama, E. and Tondro, F. (2014). Inference of R=P[X
Bradley D. M. and Gupta, R. C. (2003). Limiting behaviour of the mean residual life. Annals of the Institute of Statistical Mathematics, 55, 217-226.
Barbiero, A. (2013). Inference on reliability of stress-strength models for Poisson data. Journal of Quality and Reliability Engineering, 2013, 530530.
Barreto-Souza, W., de Morais A. L. and Cordeiro, G. M. (2011). The Weibull geometric distribution. J Stat Comput Sim., 40, 798-811.
Bryson C. and Siddiqui, M. M. (1969). Some criteria for aging. Journal of the American Statistical Association, 64, 1472-1483.
Charnes, A., Frome, E. L. and Yu, P. L. (1976). The equivalence of generalized least squares and maximum likelihood estimate in the exponential family. Journal of the American Statistical Association, 71, 169-171.
Chaubey, Y. P. and Sen, P. K. (1999). On smooth estimation of mean residual life. Journal of Statistical Planning and Inference, 75, 223-236.
Cheng, R. C. H. and Amin, N. A. K. (1979). Maximum product-of-spacing. with applications to the lognormal distribution. Math. Report 791, Department of Mathematics, UWIST, Cardi.
Church, J. D. and Harris, B. (1970). The estimation of reliability from stress–strength relationships. Technometrics, 12, 49-54.
Doonik, J. A. (2006). An Object-Oriented Matrix Language Ox 4. 5th ed. Timberlake Consultants Press: London.
Economou, P. and Caroni, C. (2007). Parametric proportional odds frailty models. Commun. Stat. Simul. Comput., 36, 579-592.
El Damsesy, M. A., El Genidy, M. M. and El Gazar, A. M. (2014). Estimation of a system performance in Pareto distribution with two independent random variables. Journal of Applied Sciences, 14, 2854-2856.
Ghitany, M. E., Al-Hussaini, E. K. and Al-Jarallah, R. A. (2005). Marshall-Olkin extended Weibull distribution and its application to censored data. J. Appl. Stat., 32, 1025-1034.
Ghitany, M. E., Al-Awadhi, F.A. and Alkhalfan, L. (2007). Marshall–Olkin extended Lomax distribution and its application to censored data. Commun. Stat. Theory Methods, 36, 1855-1866.
Ghitany, M. E., Al-Mutairi, D. K., Al-Awadhi, F. A. and Al-Burais, M. M. (2012). Marshall-Olkin extended Lindley distribution and its application. International Journal of Applied Mathematics, 25(5), 709-721.
Greenwood, J. A. Landwehr, J. M. Matalas, N. C. and Wallis, J. R. (1979). Probability weighted moments: definition and relation to parameters of several distributions expressable in inverse form. Water Resour Res., 15, 1049-1054.
Gui, W. (2013). Marshall-Olkin extended log-logistic distribution and its application in minification processes. Applied Mathematical Sciences, 7, 3947 – 3961.
Hollander, W. and Proschan, F. (1975). Tests for mean residual life. Biometrika 62, 585-593.
Jayakumar, K. and Mathew, T. (). On a generalization to Marshall–Olkin scheme and its application to Burr type XII distribution. Statistical Papers, 49, 421–439.
Jelinek, H. F. Tarvainen, M. P. and Cornforth, D. J. (2012). Rényi entropy in identification of cardiac autonomic neuropathy in diabetes. Proceedings of the 39th Conference on Computing in Cardiology, pp. 909-911.
Jose, K. K. and Krishna, E. (2011). Marshall-Olkin extended uniform distribution. Prob. Stat. Forum., 4, 78-88.
Kao, J. H. K. (1958). Computer methods for estimating Weibull parameters in reliability studies. Trans. IRE Reliab. Qual. Control, 13, 15–22.
Kao, J. H. K. (1959). A graphical estimation of mixed Weibull parameters in life testing electron tube. Technometrics, 1, 389–407.
Kenney, J. F. and Keeping, E. S. (1962). Mathematics of Statistics. 3rd ed, Princeton, NJ: Chapman and Hall, 101-102.
Kreitmeier, W. and Linder, T. (2011). High-resolution scalar quantization with Rényi entropy constraint. IEEE Trans. Inform. Theory, 57, 6837-6859.
Kotz, S., Lumelskii, Y. and Pensky, M. (2003). The stress-strength model and its generalizations: theory and applications, World Scientific Publishing, Singapore. (2003).
Kundu, D. and Gupta, R. D. (2005). Estimation of P[Y
Marshall, A. W. and Olkin, I. (1997). A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika 84, 641-652.
Meilijson, I. (1972). Limiting properties of the mean residual lifetime function. Annals of Mathematical Statistics, 43, 354-357.
Mokhlis, N. A. (2005). Reliability of a stress-strength model with Burr type III distributions. Commun. Stat. Theory Methods, 34, 1643–1657.
Moors, J. J. (1988). A quantile alternative for kurtosis. J. Royal Statist. Soc. D, 37, 25-32.
Muth, E. J. (1977). Reliability models with positive memory derived from the mean residual life function. In Theory and Applications of Reliability, (Edited by C.P. Tsokos and I.N. Shimi), pp. 401-434, Academic Press.
Nassar, M., Kumar, D., Dey, S., Cordeiro, G. M. and Afify, A. Z. (2019). The Marshall–Olkin alpha power family of distributions with applications. Journal of Computational and Applied Mathematics, 351, 41-53.
Ramos, M. W. A., Cordeiro, G. M., Marinho, P. R. D., Dias, C. R. B. and Hamedani, G. G. (2013). The Zografos-Balakrishnan log-logistic distribution: properties and applications. Journal of Statistical Theory and Applications, 12, 225–244.
Rényi, A. (1961). On measures of entropy and information. in: Proc. Fourth Berkeley Symp. Math. Statist. Probab., vol. 1, University of California Press. Berkeley, 547-561.
Rezaei, S., Alizadeh, N. R. and Nadarajah, S. (2015). Estimation of stress-strength reliability for the generalized Pareto distribution based on progressively censored samples. Annals of Data Science, 2, 83–101.
Ristic, M. M., Jose, K. K. and Ancy, J. (2007). A Marshall-Olkin gamma distribution and minification process. STARS: Stress and Anxiety Research Society 11, 107-117.
Song, K. S. (2001). Rényi information, loglikelihood and an intrinsic distribution measure. J Stat Plan Infer., 93, 51-69.