Main Article Content

Abstract

We study a new continuous distribution called the Marshall-Olkin modified Burr III distribution. The density function of the proposed model can be expressed as a mixture of modified Burr III densities. A comprehensive account of its mathematical properties is derived. The model parameters are estimated by the method of maximum likelihood. The usefulness of the derived model is illustrated over other distributions using a real data set.

Keywords

Lifetime data Marshall-Olkin family Maximum likelihood Modified Burr III Moments Order statistic

Article Details

Author Biography

Mohammed Alqawba

Department of Mathematics, College of Science and Arts, Qassim University, Ar Rass, Saudi Arabia

How to Cite
Haq, M. A. ul, Afify, A. Z., Mofleh, H. A.-, Usman, R. M., Alqawba, M., & Sarg, A. M. (2021). The Extended Marshall-Olkin Burr III Distribution: Properties and Applications. Pakistan Journal of Statistics and Operation Research, 17(1), 1-14. https://doi.org/10.18187/pjsor.v17i1.3649

References

  1. Abdel-Ghaly, A., Al-Dayian, G. and Al-Kashkari, F. (1997). The use of Burr type XII distribution on software reliability growth modeling. Microelectronics Reliability, 37, 305-313. DOI: https://doi.org/10.1016/0026-2714(95)00124-7
  2. Abdul-Moniem, I. and Seham, M. (2015). Transmuted Gompertz distribution. Computational and Applied Mathematics Journal, 1, 88-96.
  3. Afify, A. Z. and Abdellatif, A. D. (2020). The extended Burr XII distribution: properties and applications. J. of Nonlinear Sci. and Appl, 13, 133-146. DOI: https://doi.org/10.22436/jnsa.013.03.02
  4. Afify, A. Z., Cordeiro, G. M., Ibrahim, N. A., Jamal, F., Elgarhy, M. and Nasir, M. A. (2020). The Marshall-Olkin odd Burr III-G family: theory, estimation, and engineering applications, IEEE Access, doi: 10.1109/ACCESS.2020.3044156. DOI: https://doi.org/10.1109/ACCESS.2020.3044156
  5. Afify A. Z., Cordeiro G. M., Yousof, H. M., Saboor, A. and Ortega, E. M. M. (2018). The Marshall-Olkin additive Weibull distribution with variable shapes for the hazard rate. Hacettepe Journal of Mathematics and Statistics, 47, 365-381.
  6. Afify, A. Z., Kumar, D. and Elbatal, I. (2020). Marshall–Olkin power generalized Weibull distribution with applications in engineering and medicine. Journal of Statistical Theory and Applications, 19, 223-237. DOI: https://doi.org/10.2991/jsta.d.200507.004
  7. Afify, A. Z., Zayed, M. and Ahsanullah, M. (2018). The extended exponential distribution and its applications. Journal of Statistical Theory and Applications, 17, 213-229. DOI: https://doi.org/10.2991/jsta.2018.17.2.3
  8. Al-Babtain, A. A., Sherwani, R. A. K., Afify, A. Z., Aidi, K., Nasir, M. A., Jamal, A. and Saboor, A. (2021). The extended Burr-R class: properties, applications and modified test for censored data. AIMS Mathematics, 6, 2912-2931. DOI: https://doi.org/10.3934/math.2021176
  9. Al-Huniti, A. A. and AL-Dayian, G. R. (2012). Discrete Burr type III distribution. American Journal of Mathematics and Statistics, 2, 145-152. DOI: https://doi.org/10.5923/j.ajms.20120205.07
  10. Ali, A. and Ahmad, M. (2015). The transmuted modified Burr III distribution. Journal of ISOSS, 1, 119-130.
  11. Ali, A., Hasnain, S. A. and Ahmad, M. (2015). Modified Burr III distribution, properties and applications. Pak. J. Statist, 31(6), 697-708.
  12. Alice, T. and Jose, K. (2003). Marshall-Olkin Pareto processes. Far East Journal of Theoretical Statistics, 9(2), 117-132.
  13. Burr, I. W. (1942). Cumulative frequency functions. The Annals of mathematical statistics, 13(2), 215-232. DOI: https://doi.org/10.1214/aoms/1177731607
  14. Cordeiro, G., Mead, M., Afify, A. Z., Suzuki, A. and Abd El-Gaied, A. (2017). An extended Burr XII distribution: properties, inference and applications. Pakistan Journal of Statistics and Operation Research, 13, 809-828. DOI: https://doi.org/10.18187/pjsor.v13i4.1965
  15. Ghitany, M., Al-Mutairi, D., Al-Awadhi, F. and Al-Burais, M. (2012). Marshall-Olkin extended Lindley distribution and its application. International Journal of Applied Mathematics, 25(5), 709-721.
  16. Ghitany, M., Al-Awadhi, F. and Alkhalfan, L. (2007). Marshall–Olkin extended Lomax distribution and its application to censored data. Communications in Statistics-Theory and Methods, 36(10), 1855-1866. DOI: https://doi.org/10.1080/03610920601126571
  17. Gove, J. H., Ducey, M. J., Leak, W. B. and Zhang, L. (2008). Rotated sigmoid structures in managed uneven-aged northern hardwood stands: a look at the Burr Type III distribution. Forestry, 81, 161-176. DOI: https://doi.org/10.1093/forestry/cpm025
  18. Haq, M. A. U., Hashmi, S., Aidi, K., Ramos, P. L. and Louzada, F. (2020a). Unit modified Burr-III distribution: estimation, characterizations and validation test. Annals of Data Science. DOI: org/10.1007/s40745-020-00298-6. DOI: https://doi.org/10.1007/s40745-020-00298-6
  19. Haq, M. A. U., Hamedani, G. G., Elgarhy, M. and Ramos, P. L. (2020b). Marshall-Olkin Power Lomax distribution: Properties and estimation based on complete and censored samples. Int. J. Stat. Probab, 9, 48-62. DOI: https://doi.org/10.5539/ijsp.v9n1p48
  20. Haq, M. A., Usman, R. M., Hashmi, S. and Al-Omeri, A. I. (2019). The Marshall-Olkin length-biased exponential distribution and its applications. Journal of King Saud University-Science. 31, 246-251. DOI: https://doi.org/10.1016/j.jksus.2017.09.006
  21. Krishna, E., Jose, K., Alice, T. and Ristic', M. M. (2013). The Marshall-Olkin Fréchet distribution. Communications in Statistics-Theory and Methods, 42, 4091-4107. DOI: https://doi.org/10.1080/03610926.2011.648785
  22. Lindsay, S., Wood, G. and Woollons, R. (1996). Modeling the diameter distribution of forest stands using the Burr distribution. Journal of Applied Statistics, 23(6), 609-620. DOI: https://doi.org/10.1080/02664769623973
  23. Mansour, M. M., Aryal, G., Afify, A. Z. and Ahmad, M. (2018). The Kumaraswamy exponentiated Fréchet distribution. Pakistan Journal of Statistics, 34, 177-193.
  24. Marshall, A. W. and Olkin, I. (1997). A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika, 84, 641-652. DOI: https://doi.org/10.1093/biomet/84.3.641
  25. Mead, M. E., Cordeiro, G. M., Afify, A. Z. and Al Mofleh, H. (2019). The alpha power transformation family: properties and applications. Pakistan Journal of Statistics and Operation Research, 15, 525-545. DOI: https://doi.org/10.18187/pjsor.v15i3.2969
  26. Mielke Jr, P. W. (1973). Another family of distributions for describing and analyzing precipitation data. Journal of Applied Meteorology, 12, 275-280. DOI: https://doi.org/10.1175/1520-0450(1973)012<0275:AFODFD>2.0.CO;2
  27. MirMostafaee, S., Mahdizadeh, M. and Lemonte, A. J. (2017). The Marshall–Olkin extended generalized Rayleigh distribution: Properties and applications. Communications in Statistics-Theory and Methods, 46, 653-671. DOI: https://doi.org/10.1080/03610926.2014.1002937
  28. Nadarajah, S. and Kotz, S. (2006a). q exponential is a Burr distribution. Physics Letters A, 359, 577-579. DOI: https://doi.org/10.1016/j.physleta.2006.07.035
  29. Nadarajah, S. and Kotz, S. (2006b). The beta exponential distribution. Reliability engineering & system safety, 91(6), 689-697. DOI: https://doi.org/10.1016/j.ress.2005.05.008
  30. Nadarajah, S. and Kotz, S. (2007). On the alternative to the Weibull function. Engineering Fracture Mechanics, 74(3), 451-456. DOI: https://doi.org/10.1016/j.engfracmech.2006.06.007
  31. Nassar, M., Kumar, D., Dey, S., Cordeiro, G. M. and Afify, A. Z. (2019). The Marshall–Olkin alpha power family of distributions with applications. Journal of Computational and Applied Mathematics, 351, 41-53. DOI: https://doi.org/10.1016/j.cam.2018.10.052
  32. Raffiq, G., Dar, I. S., Haq, M. A. U. and Ramos, E. (2020). The Marshall–Olkin inverted Nadarajah–Haghighi distribution: estimation and applications. Annals of Data Science. DOI: org/10.1007/s40745-020-00297-7.
  33. Ramos, P. L. and Louzada, F. (2019). A distribution for instantaneous failures. Stats, 2, 247-258. DOI: https://doi.org/10.3390/stats2020019
  34. Ristic, M. M., Jose, K. and Ancy, J. (2007). A Marshall–Olkin gamma distribution and minification process. STARS: Stress Anxiety Res Soc, 11, 107-117.
  35. Shanker, R. (2015). Shanker distribution and its applications. International journal of statistics and Applications, 5, 338-348.
  36. Smith, R. L. and Naylor, J. C. (1987). A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution. Applied Statistics, 36, 358-369. DOI: https://doi.org/10.2307/2347795
  37. Tejeda, H. A. and Goodwin, B. K. (2008). Modeling crop prices through a Burr distribution and analysis of the correlation between crop prices and yields using a copula method. Paper presented at the annual meeting of the Agricultural and Applied Economics Association, Orlando, FL, USA.
  38. Usman, R. M. and Haq, M. A. U. (2020). The Marshall-Olkin extended inverted Kumaraswamy distribution: Theory and applications. Journal of King Saud University-Science, 32(1), 356-365. DOI: https://doi.org/10.1016/j.jksus.2018.05.021
  39. Wingo, D. R. (1993). Maximum likelihood methods for fitting the Burr type XII distribution to multiply (progressively) censored life test data. Metrika, 40, 203-210. DOI: https://doi.org/10.1007/BF02613681