Main Article Content

Abstract

In this paper, certain characterizations of twenty newly proposed discrete distributions: the discrete gen- eralized Lindley distribution of El-Morshedy et al.(2021), the discrete Gumbel distribution of Chakraborty et al.(2020), the skewed geometric distribution of Ong et al.(2020), the discrete Poisson X gamma distri- bution of Para et al.(2020), the discrete Cos-Poisson distribution of Bakouch et al.(2021), the size biased Poisson Ailamujia distribution of Dar and Para(2021), the generalized Hermite-Genocchi distribution of El-Desouky et al.(2021), the Poisson quasi-xgamma distribution of Altun et al.(2021a), the exponentiated discrete inverse Rayleigh distribution of Mashhadzadeh and MirMostafaee(2020), the Mlynar distribution of Fr¨uhwirth et al.(2021), the flexible one-parameter discrete distribution of Eliwa and El-Morshedy(2021), the two-parameter discrete Perks distribution of Tyagi et al.(2020), the discrete Weibull G family distribution of Ibrahim et al.(2021), the discrete Marshall–Olkin Lomax distribution of Ibrahim and Almetwally(2021), the two-parameter exponentiated discrete Lindley distribution of El-Morshedy et al.(2019), the natural discrete one-parameter polynomial exponential distribution of Mukherjee et al.(2020), the zero-truncated discrete Akash distribution of Sium and Shanker(2020), the two-parameter quasi Poisson-Aradhana distribution of Shanker and Shukla(2020), the zero-truncated Poisson-Ishita distribution of Shukla et al.(2020) and the Poisson-Shukla distribution of Shukla and Shanker(2020) are presented to complete, in some way, the au- thors’ works.

Keywords

Discrete distributions Characterizations Conditional expectation Hazard function Reverse hazard function

Article Details

How to Cite
Hamedani, G., Najaf, M., Roshani, A., & Butt, N. S. (2021). Characterizations of Twenty (2020-2021) Proposed Discrete Distributions. Pakistan Journal of Statistics and Operation Research, 17(4), 847-884. https://doi.org/10.18187/pjsor.v17i4.3902

References

  1. Altun, E., Bhati, D., and Khan, N. M. (2021a). A new approach to model the counts of earthquakes: Inarpqx(1) process. SN Applied Sciences, 3(2).
  2. Altun, E., Cordeiro, G. M., and Ristic, M. M. (2021b). An one-parameter compounding discrete distribution. Journal of Applied Statistics.
  3. Bakouch, H. S., Chesneau, C., Karakaya, K., and Kus, C. (2021). The cos-poisson model with a novel count regression analysis. Hacettepe Journal of Mathematics and Statistics, 50(2):559-578.
  4. Chakraborty, S., Chakravarty, D., Mazucheli, J., and Bertoli, W. (2020). A discrete analog of gum- bel distribution: properties, parameter estimation and applications. Journal of Applied Statistics, 48(4):712-737.
  5. Dar, S. A. and Para, B. (2021). On size biased poisson ailamujia distribution and its applications. Pakistan Journal of Statistics, 37(1):19-38.
  6. El-Desouky, B. S., Gomaa, R. S., and Magar, A. M. (2021). New discrete lifetime distribution with applications to count data. Journal of Statistical Theory and Applications.
  7. El-Morshedy, M., Altun, E., and Eliwa, M. S. (2021). A new statistical approach to model the counts of novel coronavirus cases. Mathematical Sciences.
  8. El-Morshedy, M., Eliwa, M. S., and Nagy, H. (2019). A new two-parameter exponentiated discrete lindley distribution: properties, estimation and applications. Journal of Applied Statistics, 47(2):1-
  9. Eliwa, M. S. and El-Morshedy, M. (2021). A one-parameter discrete distribution for over-dispersed data: statistical and reliability properties with applications. Journal of Applied Statistics.
  10. Fr¨uhwirth, R., Malina, R., and Mitaroff, W. (2021). A new discrete distribution arising from a generalised random game and its asymptotic properties. Asian Journal of Probability and Statistics, 11(3):11-20.
  11. Ibrahim, G. M. and Almetwally, E. M. (2021). Discrete marshall-olkin lomax distribution application of covid-19. Biomedical Journal of Scientiï¬c and Technical Research.
  12. Ibrahim, M., Ali, M. M., and Yousof, H. M. (2021). The discrete analogue of the weibull g family: Properties, different applications, bayesian and non-bayesian estimation methods. Annals of Data Science.
  13. Mashhadzadeh, Z. H. and MirMostafaee, S. M. T. K. (2020). The exponentiated discrete inverse rayleigh distribution. Journal of Hyperstructures, 9(1):54-61.
  14. Mukherjee, I., Maiti, S. S., and Shanker, R. (2020). On estimation of the pmf and the cdf of a natural discrete one parameter polynomial exponential distribution.
  15. Ong, S. H., Chakraborty, S., and Biswas, A. (2020). A new generalization of the geometric distri- bution using azzalini's mechanism: properties and application. researchgate (preprint-9th october 2020).
  16. Para, B., Jan, T. R., and Bakouch, H. S. (2020). Poisson xgamma distribution: A discrete model for count data analysis. Model Assisted Statistics and Applications, 15(2):139-151.
  17. Shanker, R. and Shukla, K. K. (2020). A quasi poisson-aradhana distribution. Journal of Applied Statistics, 3(1):3-17.
  18. Shukla, K. K. and Shanker, R. (2020). The poisson-shukla distribution and its applications. 15.
  19. Shukla, K. K., Shanker, R., and Tiwari, M. K. (2020). Zero-truncated poisson-ishita distribution and its applications. Journal of Scientiï¬c Research, 64.
  20. Sium, S. and Shanker, R. (2020). A zero-truncated discrete akash distribution with properties and applications. 3(2):12-25.
  21. Tyagi, A., Singh, B., and Choudhary, N. (2020). A new discrete distribution: Theory and appli- cations to discrete failure lifetime and count data. Journal of Applied Probability and Statistics, 15(3):119-145.

Most read articles by the same author(s)

> >>