Main Article Content
Abstract
In this paper, certain characterizations of twenty newly proposed discrete distributions: the discrete gen- eralized Lindley distribution of El-Morshedy et al.(2021), the discrete Gumbel distribution of Chakraborty et al.(2020), the skewed geometric distribution of Ong et al.(2020), the discrete Poisson X gamma distri- bution of Para et al.(2020), the discrete Cos-Poisson distribution of Bakouch et al.(2021), the size biased Poisson Ailamujia distribution of Dar and Para(2021), the generalized Hermite-Genocchi distribution of El-Desouky et al.(2021), the Poisson quasi-xgamma distribution of Altun et al.(2021a), the exponentiated discrete inverse Rayleigh distribution of Mashhadzadeh and MirMostafaee(2020), the Mlynar distribution of Fr¨uhwirth et al.(2021), the flexible one-parameter discrete distribution of Eliwa and El-Morshedy(2021), the two-parameter discrete Perks distribution of Tyagi et al.(2020), the discrete Weibull G family distribution of Ibrahim et al.(2021), the discrete Marshall–Olkin Lomax distribution of Ibrahim and Almetwally(2021), the two-parameter exponentiated discrete Lindley distribution of El-Morshedy et al.(2019), the natural discrete one-parameter polynomial exponential distribution of Mukherjee et al.(2020), the zero-truncated discrete Akash distribution of Sium and Shanker(2020), the two-parameter quasi Poisson-Aradhana distribution of Shanker and Shukla(2020), the zero-truncated Poisson-Ishita distribution of Shukla et al.(2020) and the Poisson-Shukla distribution of Shukla and Shanker(2020) are presented to complete, in some way, the au- thors’ works.
Keywords
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following License
CC BY: This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
References
- Altun, E., Bhati, D., and Khan, N. M. (2021a). A new approach to model the counts of earthquakes: Inarpqx(1) process. SN Applied Sciences, 3(2).
- Altun, E., Cordeiro, G. M., and Ristic, M. M. (2021b). An one-parameter compounding discrete distribution. Journal of Applied Statistics.
- Bakouch, H. S., Chesneau, C., Karakaya, K., and Kus, C. (2021). The cos-poisson model with a novel count regression analysis. Hacettepe Journal of Mathematics and Statistics, 50(2):559-578.
- Chakraborty, S., Chakravarty, D., Mazucheli, J., and Bertoli, W. (2020). A discrete analog of gum- bel distribution: properties, parameter estimation and applications. Journal of Applied Statistics, 48(4):712-737.
- Dar, S. A. and Para, B. (2021). On size biased poisson ailamujia distribution and its applications. Pakistan Journal of Statistics, 37(1):19-38.
- El-Desouky, B. S., Gomaa, R. S., and Magar, A. M. (2021). New discrete lifetime distribution with applications to count data. Journal of Statistical Theory and Applications.
- El-Morshedy, M., Altun, E., and Eliwa, M. S. (2021). A new statistical approach to model the counts of novel coronavirus cases. Mathematical Sciences.
- El-Morshedy, M., Eliwa, M. S., and Nagy, H. (2019). A new two-parameter exponentiated discrete lindley distribution: properties, estimation and applications. Journal of Applied Statistics, 47(2):1-
- Eliwa, M. S. and El-Morshedy, M. (2021). A one-parameter discrete distribution for over-dispersed data: statistical and reliability properties with applications. Journal of Applied Statistics.
- Fr¨uhwirth, R., Malina, R., and Mitaroff, W. (2021). A new discrete distribution arising from a generalised random game and its asymptotic properties. Asian Journal of Probability and Statistics, 11(3):11-20.
- Ibrahim, G. M. and Almetwally, E. M. (2021). Discrete marshall-olkin lomax distribution application of covid-19. Biomedical Journal of Scientiï¬c and Technical Research.
- Ibrahim, M., Ali, M. M., and Yousof, H. M. (2021). The discrete analogue of the weibull g family: Properties, different applications, bayesian and non-bayesian estimation methods. Annals of Data Science.
- Mashhadzadeh, Z. H. and MirMostafaee, S. M. T. K. (2020). The exponentiated discrete inverse rayleigh distribution. Journal of Hyperstructures, 9(1):54-61.
- Mukherjee, I., Maiti, S. S., and Shanker, R. (2020). On estimation of the pmf and the cdf of a natural discrete one parameter polynomial exponential distribution.
- Ong, S. H., Chakraborty, S., and Biswas, A. (2020). A new generalization of the geometric distri- bution using azzalini's mechanism: properties and application. researchgate (preprint-9th october 2020).
- Para, B., Jan, T. R., and Bakouch, H. S. (2020). Poisson xgamma distribution: A discrete model for count data analysis. Model Assisted Statistics and Applications, 15(2):139-151.
- Shanker, R. and Shukla, K. K. (2020). A quasi poisson-aradhana distribution. Journal of Applied Statistics, 3(1):3-17.
- Shukla, K. K. and Shanker, R. (2020). The poisson-shukla distribution and its applications. 15.
- Shukla, K. K., Shanker, R., and Tiwari, M. K. (2020). Zero-truncated poisson-ishita distribution and its applications. Journal of Scientiï¬c Research, 64.
- Sium, S. and Shanker, R. (2020). A zero-truncated discrete akash distribution with properties and applications. 3(2):12-25.
- Tyagi, A., Singh, B., and Choudhary, N. (2020). A new discrete distribution: Theory and appli- cations to discrete failure lifetime and count data. Journal of Applied Probability and Statistics, 15(3):119-145.