Main Article Content

Abstract

Multimodal alpha skew normal (MMASN) distribution is proposed for modelling skewed observations in the presence of multiple modality at arbitrary points. To this end the multimodal skew normal distribution of Chakraborty et al. (2015) is extended by integrating it with alpha skew normal distribution of Elal-Olivero (2010). Cumulative distribution function (cdf), moments, skewness and kurtosis of the proposed distribution are derived in compact form. The data modelling ability of the proposed distribution is checked by considering three multimodal data sets from literature in comparison to some nested and known distributions. Akaike Information Criterion (AIC) and the likelihood ratio (LR) test, both clearly favored proposed model over its nested models as expected.

Keywords

Skew Distribution Alpha Skew Distribution Multimodal Skew Normal Distribution AIC LR Test

Article Details

How to Cite
Hazarika, P. J., Shah, S., Chakraborty, S., Alizadeh, M., & Hamedani, G. (2023). Multimodal Alpha Skew Normal Distribution: A New Distribution to Model Skewed Multimodal Observations. Pakistan Journal of Statistics and Operation Research, 19(4), 747-763. https://doi.org/10.18187/pjsor.v19i4.4232

References

    1. Adetunji, A. A. (2021). Transmuted Sushila Distribution and its application to lifetime data. Journal of Mathematical Analysis and Modeling, 2(1), 1-14.
    2. Adetunji, A. A., Ademuyiwa, J. A., & Adejumo, O. A. (2020). The Inverse Sushila Distribution: Properties and Application. Asian Research Journal of Mathematics, 28-39.
    3. Baghestani, A. R., Rahimzadeh, M., & Pourhoseingholi, M. A. (2014). Generalized Poisson-Lindely distribution in promotion time cure model. Pakistan Journal of Statistics and Operation Research, 10(4), 399-408.
    4. Berkson, J., & Gage, R. P. (1952). Survival curve for cancer patients following treatment. Journal of the American Statistical Association, 47(259), 501-515.
    5. Boag, J. W. (1949). Maximum likelihood estimates of the proportion of patients cured by cancer therapy. Journal of the Royal Statistical Society. Series B (Methodological), 11(1), 15-53.
    6. Ibrahim, J. G., Chen, M. H., & Sinha, D. (2001). Bayesian semiparametric models for survival data with a cure fraction. Biometrics, 57(2), 383-388.
    7. Cancho, V. G., Ortega, E. M., & Bolfarine, H. (2009). The log-exponentiated-Weibull regression models with cure rate: local influence and residual analysis. Journal of Data Science, 7(4), 433-458.
    8. Cancho, V. G., Rodrigues, J., & Castro, M.D. (2011). A flexible model for survival data with a cure rate: a Bayesian approach. Journal of Applied Statistics, 38(1), 57-70.
    9. Cancho, V. G., Louzada, F., & Barriga, G. D. (2012). The geometric Birnbaum–Saunders regression model with cure rate. Journal of Statistical Planning and Inference, 142(4), 993-1000.
    10. Castro, M. D., Cancho, V. G., & Rodrigues, J. (2009). A Bayesian long‐term survival model parametrized in the cured fraction. Biometrical Journal: Journal of Mathematical Methods in Biosciences, 51(3), 443-455.
    11. Castro, M. D., Cancho, V. G., & Rodrigues, J. (2010). A note on a unified approach for cure rate models. Brazilian Journal of Probability and Statistics, 24(1), 100-103.
    12. Castro, M.D., & Gómez, Y. M. (2019). A Bayesian Cure Rate Model Based on the Power Piecewise Exponential Distribution. Methodology and Computing in Applied Probability, 1-16.
    13. Chen, M. H., Ibrahim, J. G., & Sinha, D. (1999). A new Bayesian model for survival data with a surviving fraction. Journal of the American Statistical Association, 94(447), 909-919.
    14. Computing, R. (2021). R: A language and environment for statistical computing. Vienna: R Core Team.
    15. Cooner, F., Banerjee, S., Carlin, B. P., & Sinha, D. (2007). Flexible cure rate modeling under latent activation schemes. Journal of the American Statistical Association, 102(478), 560-572.
    16. Cordeiro, G. M., Cancho, V. G., Ortega, E. M., & Barriga, G. D. (2016). A model with long-term survivors: negative binomial Birnbaum-Saunders. Communications in Statistics-Theory and Methods, 45(5), 1370-1387.
    17. D’Andrea, A., Rocha, R., Tomazella, V., & Louzada, F. (2018). Negative Binomial Kumaraswamy-G Cure Rate Regression Model. Journal of Risk and Financial Management, 11(1), 6.
    18. Gallardo, D. I., Gómez, Y. M., & Castro, M.D. (2018). A flexible cure rate model based on the polylogarithm distribution. Journal of Statistical Computation and Simulation, 88(11), 2137-2149.
    19. Kersey, J. H., Weisdorf, D., Nesbit, M. E., LeBien, T. W., Woods, W. G., McGlave, P. B., ... & Ramsay, N. K. (1987). Comparison of autologous and allogeneic bone marrow transplantation for treatment of high-risk refractory acute lymphoblastic leukemia. New England Journal of Medicine, 317(8), 461-467.
    20. Rather, A. A., & Subramanian, C. (2018). Length biased Sushila distribution. Universal Review, 7, 1010-1023.
    21. Rodrigues, J., Cancho, V. G., de Castro, M., & Louzada-Neto, F. (2009). On the unification of long-term survival models. Statistics & Probability Letters, 79(6), 753-759.
    22. Shanker, R., Sharma, S., Shanker, U., & Shanker, R. (2013). Sushila distribution and its application to waiting times data. International Journal of Business Management, 3(2), 1-11.
    23. Shawki, A. W., & Elgarhy, M. (2017). Kumaraswamy Sushila distribution. International Journal of Scientific Engineering and Science, 1(7), 29-32.
    24. Tsodikov, A. D., Ibrahim, J. G., & Yakovlev, A. Y. (2003). Estimating cure rates from survival data: an alternative to two-component mixture models. Journal of the American Statistical Association, 98(464), 1063-1078.

Most read articles by the same author(s)