Main Article Content


Time series are essential for anticipating various claims payment applications. For insurance firms to prevent significant losses brought on by potential future claims, the future values of predicted claims are crucial. Additionally, the ideal parameter is chosen artificially. By using a genuine application, the proposed model’s utility is demonstrated. Additionally, the ideal parameter is chosen artificially. By using a genuine application, the proposed model's utility is demonstrated. Also, the single exponential smoothing model is used for prediction under the Holt-Winters’ additive algorithm.


Exponential smoothing Claims data Cullen-Frey Holt-Winters’ additive algorithm Insurance data Residuals analysis Forecasting

Article Details

How to Cite
Salem, M., & Khalil, M. G. (2023). Short-Term Insurance Claims Payments Forecasting with Holt-Winter Filtering and Residual Analysis. Pakistan Journal of Statistics and Operation Research, 19(1), 167-186.


  1. Aboraya, M., Ali, M. M., Yousof, H. M. and Ibrahim, M. (2022a). A New Flexible Probability Model: Theory, Estimation and Modeling Bimodal Left Skewed Data. Pakistan Journal of Statistics and Operation Research, 18(2), 437-463.
  2. Aboraya, M., Ali, M. M., Yousof, H. M. and Ibrahim, M. (2022b). A Novel Lomax Extension with Statistical Properties, Copulas, Different Estimation Methods and Applications. Bulletin of the Malaysian Mathematical Sciences Society, (2022)
  3. Al-babtain, A. A., Elbatal, I. and Yousof, H. M. (2020). A New Flexible Three-Parameter Model: Properties, Clayton Copula, and Modeling Real Data. Symmetry, 12(3), 440.
  4. Al-Babtain, A. A., Elbatal, I. and Yousof, H. M. (2020). A new three parameter Fréchet model with mathematical properties and applications. Journal of Taibah University for Science, 14(1), 265-278.
  5. Box, G. and Jenkins, G. (1970). Time Series Analysis: Forecasting and Control. San Francisco: Holden-Day.
  6. Box, G. E., Jenkins, G. M., Reinsel, G. C. and Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.
  7. Brown, R. G. (1959). Statistical forecasting for inventory control. McGraw/Hill.
  8. Charpentier, A. (2014). Computational actuarial science with R. CRC press.
  9. Cummins, J. D. and Griepentrog, G. L. (1985). Forecasting automobile insurance paid claim costs using econometric and ARIMA models. International Journal of Forecasting, 1(3), 203-215.
  10. Darekar, A. and Reddy, A. (2017). Forecasting oilseeds prices in India: Case of groundnut. Forecasting Oilseeds Prices in India: Case of Groundnut (December 14, 2017). J. Oilseeds Res, 34(4), 235-240.
  11. Elgohari, H. and Yousof, H. M. (2020). A Generalization of Lomax Distribution with Properties, Copula and Real Data Applications. Pakistan Journal of Statistics and Operation Research, 16(4), 697-711.
  12. Elgohari, H. and Yousof, H. M. (2020). New Extension of Weibull Distribution: Copula, Mathematical Properties and Data Modeling. Statistics, Optimization & Information Computing, 8(4), 972-993.
  13. El-Morshedy, M., Alshammari, F. S., Hamed, Y. S., Eliwa, M. S., Yousof, H. M. (2021). A New Family of Continuous Probability Distributions. Entropy, 23, 194.
  14. Goual, H., Yousof, H. M. and Ali, M. M. (2019). Validation of the odd Lindley exponentiated exponential by a modified goodness of fit test with applications to censored and complete data. Pakistan Journal of Statistics and Operation Research, 15(3), 745-771.
  15. Hafiz, U. A., Salleh, F., Garba, M. and Rashid, N. (2021). Projecting insurance penetration rate in Nigeria: An ARIMA approach. REVISTA GEINTEC-GESTAO INOVACAO E TECNOLOGIAS, 11(3), 63-75.
  16. Hamedani, G. G., Altun, E., Korkmaz, M. Ç., Yousof, H. M. and Butt, N. S. (2018). A new extended G family of continuous distributions with mathematical properties, characterizations and regression modeling. Pakistan Journal of Statistics and Operation Research, 737-758.
  17. Hamedani, G. G., Korkmaz, M. C., Butt, N. S. and Yousof, H. M. (2021). The Type I Quasi Lambert Family: Properties, Characterizations and Different Estimation Methods. Pakistan Journal of Statistics and Operation Research, 17(3), 545-558.
  18. Hamedani, G. G., Rasekhi, M., Najibi, S., Yousof, H. M. and Alizadeh, M. (2019). Type II general exponential class of distributions. Pakistan Journal of Statistics and Operation Research, 15(2), 503-523.
  19. Hamedani, G. G., Yousof, H. M., Rasekhi, M., Alizadeh, M. and Najibi, S. M., (2018). Type I general exponential class of distributions. Pakistan Journal of Statistics and Operation Research, 14(1), 39-55.
  20. Holt, C. E. (1957). Forecasting seasonals and trends by exponentially weighted averages (O.N.R. Memorandum No. 52). Carnegie Institute of Technology, Pittsburgh USA.
  21. Hyndman, R. J., and Athanasopoulos, G. (2018). Holt’s linear trend method. Forecasting: principals and practice, 2nd Ed.
  22. Ibrahim, M., Aidi, K., Ali, M. M. and Yousof, H. M. (2022). A Novel Test Statistic for Right Censored Validity under a new Chen extension with Applications in Reliability and Medicine. Annals of Data Science, forthcoming.
  23. Ibrahim, M., Yadav, A. S., Yousof, H. M., Goual, H. and Hamedani, G. G. (2019). A new extension of Lindley distribution: modified validation test, characterizations and different methods of estimation. Communications for Statistical Applications and Methods, 26(5), 473-495.
  24. Iqbal, M. C., Jamshaid, T. M. and Rashid, A. Q. A. (2016). Forecasting of wheat production: a comparative study of Pakistan and India. International Journal of Advanced Research (IJAR), 4(12), 698-709.
  25. Jakaša, T., Andročec, I. and Sprčić, P. (2011). Electricity price forecasting-ARIMA model approach. In 2011 8th International Conference on the European Energy Market (EEM) (pp. 222-225). IEEE.
  26. Jang, K. P., Kam, S. and Park, J. Y. (1991). Trend and Forecast of the Medical Care Utilization Rate, the Medical Expense per Case and the Treatment Days per Cage in Medical Insurance Program for Employees by ARIMA Model. Journal of Preventive Medicine and Public Health, 24(3), 441-458.
  27. Korkmaz, M. Ç., Altun, E., Chesneau, C. and Yousof, H. M. (2022). On the unit-Chen distribution with associated quantile regression and applications. Mathematica Slovaca, 72 (2022), No. 3, 765-786.
  28. Kumar, V. S., Satpathi, D. K., Kumar, P. P. and Haragopal, V. V. (2020). Forecasting motor insurance claim amount using ARIMA model. In AIP Conference Proceedings (Vol. 2246, No. 1, p. 020005). AIP Publishing LLC.
  29. Mansour, M. M., Ibrahim, M., Aidi, K., Butt, N. S., Ali, M. M., Yousof, H. M. and Hamed, M. S. (2020). A New Log-Logistic Lifetime Model with Mathematical Properties, Copula, Modified Goodness-of-Fit Test for Validation and Real Data Modeling. Mathematics, 8(9), 1508.
  30. Mansour, M., Rasekhi, M., Ibrahim, M., Aidi, K., Yousof, H. M. and Elrazik, E. A. (2020). A New Parametric Life Distribution with Modified Bagdonavičius–Nikulin Goodness-of-Fit Test for Censored Validation, Properties, Applications, and Different Estimation Methods. Entropy, 22(5), 592.
  31. Mansour, M. M., Butt, N. S., Yousof, H. M., Ansari, S. I. and Ibrahim, M. (2020). A Generalization of Reciprocal Exponential Model: Clayton Copula, Statistical Properties and Modeling Skewed and Symmetric Real Data Sets. Pakistan Journal of Statistics and Operation Research, 16(2), 373-386.
  32. Mohamed, H. S., Cordeiro, G. M. and Yousof, H. M. (2022). The synthetic autoregressive model for the insurance claims payment data: modeling and future prediction. Statistics, Optimization & Information Computing, forthcoming.
  33. Mohammadi, H. and Rich, D. P. (2013). Dynamics of unemployment insurance claims: an application of ARIMA-GARCH models. Atlantic Economic Journal, 41(4), 413-425.
  34. Nascimento, A. D., Silva, K. F., Cordeiro, G. M., Alizadeh, M., Yousof, H. M. and Hamedani, G. G. (2019). The odd Nadarajah-Haghighi family of distributions: properties and applications. Studia Scientiarum Mathematicarum Hungarica, 56(2), 185-210.
  35. Nath, B., Dhakre, D. S. and Bhattacharya, D. (2019). Forecasting wheat production in India: An ARIMA modelling approach. Journal of Pharmacognosy and Phytochemistry, 8(1), 2158-2165.
  36. Palakuru, M., Yarrakula, K., Chaube, N. R., Sk, K. B. and Satyaji Rao, Y. R. (2019). Identification of paddy crop phenological parameters using dual polarized SCATSAT-1 (ISRO, India) scatterometer data. Environmental Science and Pollution Research, 26(2), 1565-1575.
  37. Sahu, P. K., Mishra, P., Dhekale, B. S., Vishwajith, K. P. and Padmanaban, K. (2015). Modelling and forecasting of area, production, yield and total seeds of rice and wheat in SAARC countries and the world towards food security. American Journal of Applied Mathematics and Statistics, 3(1), 34-48.
  38. Shehata, W. A. M. and Yousof, H. M. (2021). The four-parameter exponentiated Weibull model with Copula, properties and real data modeling. Pakistan Journal of Statistics and Operation Research, 17(3), 649-667.
  39. Shehata, W. A. M., Butt, N. S., Yousof, H. and Aboraya, M. (2022). A New Lifetime Parametric Model for the Survival and Relief Times with Copulas and Properties. Pakistan Journal of Statistics and Operation Research, 18(1), 249-272.
  40. Shrahili, M.; Elbatal, I. and Yousof, H. M. (2021). Asymmetric Density for Risk Claim-Size Data: Prediction and Bimodal Data Applications. Symmetry 2021, 13, 2357.
  41. Venezian, E. C. and Leng, C. C. (2006). Application of spectral and ARIMA analysis to combined-ratio patterns. The Journal of Risk Finance.
  42. Winters, P. R. (1960). Forecasting sales by exponentially weighted moving averages. Management Science, 6(3), 324–342.
  43. Yadav, A. S., Altun, E. and Yousof, H. M. (2021). Burr–Hatke Exponential Distribution: A Decreasing Failure Rate Model, Statistical Inference and Applications. Annals of Data Science, 8(2), 241–260.
  44. Yousof, H. M., Ali, M. M., Hamedani, G. G., Aidi, K. & Ibrahim, M. (2022). A new lifetime distribution with properties, characterizations, validation testing, different estimation methods. Statistics, Optimization & Information Computing, 10(2), 519-547.
  45. Yousof, H. M., Korkmaz, M. Ç., K., Hamedani, G. G and Ibrahim, M. (2022). A novel Chen extension: theory, characterizations and different estimation methods. Eur. J. Stat, 2(2022), 1-20.