Main Article Content

Abstract

Spatial analysis techniques are used in the data analysis of ecological studies, which consider geographical areas as observation units. In this article, we propose a Bayesian bivariate spatial shared component model to mapping the breast and cervical cancer mortality in Southern Brazil, based on the models introduced by Knorr-Held and Best (2001) and Held et al. (2005). Markov Chain Monte Carlo (MCMC) methods were used to spatially smooth the standardized mortality ratios (SMR) for both diseases. Local Indicator of Spatial Association (LISA) was used to verify the existence of spatial clusters in specific geographical areas. This study was carried out using secondary data obtained from publicly available health information systems.

Keywords

Spatial analysis Ecological studies Epidemiology Bayesian methods Gaussian Markov random field

Article Details

How to Cite
Martinez, E. Z., Gafuri Silva, D., Intrebartoli Resende, L., Aparecida da Silva Lizzi, E., & Achcar, J. A. (2022). Bayesian bivariate spatial shared component model: mapping breast and cervical cancer mortality in Southern Brazil. Pakistan Journal of Statistics and Operation Research, 18(4), 775-788. https://doi.org/10.18187/pjsor.v18i4.4095

References

    1. Ahmadipanahmehrabadi, V., Hassanzadeh, A., and Mahaki, B. (2019). Bivariate spatio-temporal shared component
    modeling: Mapping of relative death risk due to colorectal and stomach cancers in Iran provinces.
    International Journal of Preventive Medicine, 10:39, doi:10.4103/ijpvm.IJPVM 31 17.
    2. Anderson, C. and Ryan, L. M. (2017). A comparison of spatio-temporal disease mapping approaches including
    an application to ischaemic heart disease in New South Wales, Australia. International Journal of
    Environmental Research and Public Health, 14:146, doi:10.3390/ijerph14020146.
    3. Anselin, L. (1995). Local indicators of spatial association - LISA. Geographical Analysis, 27:93–115,
    doi:10.1111/j.1538–4632.1995.tb00338.x.
    4. Ara´ujo, V. E. M., Pinheiro, L. C., Almeida, M. C. M., Menezes, F. C., Morais, M. H. F., Reis, I. A., Assunc¸ ˜ao,
    R. M., and Carneiro, M. (2013). Relative risk of visceral leishmaniasis in Brazil: a spatial analysis in urban
    area. PLoS Neglected Tropical Disease, 7:e2540, doi:10.1371/journal.pntd.0002540.
    5. Bakka, H., Rue, H., Fuglstad, G. A., Riebler, A., Bolin, D., Illian, J., Krainski, E., Simpson, D., and Lindgren,
    F. (2018). Spatial modeling with R-INLA: A review. Wiley Interdisciplinary Reviews: Computational
    Statistics, 10:61–82, doi:10.1002/wics.1443.
    6. Bermudi, P. M. M., Pellini, A. C. G., Rebolledo, E. A. S., Diniz, C. S. G., Aguiar, B. S. D., Ribeiro,
    A. G., Failla, M. A., Baquero, O. S., and Chiaravalloti-Neto, F. (2020). Spatial pattern of mortality from
    breast and cervical cancer in the city of S˜ao Paulo. Revista de Saude Publica, 54:142, doi:10.11606/s1518–
    8787.2020054002447.
    7. Besag, J., York, J., and Molli´e, A. (1991). Bayesian image restoration, with two applications in spatial statistics.
    Annals of the Institute of Statistical Mathematics, 43:1–59, doi:10.1007/BF00116466.
    8. Blangiardo, M. and Cameletti, M. (2015). Spatial and spatio-temporal Bayesian models with R-INLA. John
    Wiley & Sons, New York, USA.
    9. Bousquat, A., Giovanella, L., Fausto, M. C. R., Medina, M. G., Martins, C. L., Almeida, P. F., Campos, E.
    M. S., and Mota, P. H. S. (2019). Primary care in health regions: policy, structure, and organization. Cadernos
    de Saude Publica, 35:e00099118, doi:10.1590/0102–311X00099118.
    10. Box, G. E. and Tiao, G. C. (2013). Bayesian inference in statistical analysis, 3rd edition. Chapman and
    Hall/CRC, Boca Raton, USA.
    11. Carlin, B. P. and Louis, T. A. (2008). Bayesian methods for data analysis. Chapman and Hall/CRC, Boca
    Raton, USA.
    12. Chen, M. H. and Shao, Q. M. (1999). Monte Carlo estimation of Bayesian credible and HPD intervals.
    Journal of Computational and Graphical Statistics, 8:69–92, doi:10.1080/10618600.1999.10474802.
    13. Cowles, M. K. (2013). Applied Bayesian statistics: with R and OpenBUGS examples. Springer Science &
    Business Media, New York, USA.
    14. Cowles, M. K. and Carlin, B. P. (1994). Markov Chain Monte Carlo convergence diagnostics: A comparative
    review. Journal of American Statistical Association, 91:883–904, doi:10.1080/01621459.1996.10476956.
    15. De Smedt, T., Simons, K., Van Nieuwenhuyse, A., and Molenberghs, G. (2015). Comparing MCMC
    and INLA for disease mapping with Bayesian hierarchical model. Archives of Public Health, 73:O2,
    doi:10.1186/2049–3258–73–S1–O2.
    16. Diniz, C. S. G., Pellini, A. C. G., Ribeiro, A. G., Tedardi, M. V., Miranda, M. J., Touso, M. M., Baquero,
    O. S., C., S. P., and Chiaravalloti-Neto, F. (2017). Breast cancer mortality and associated factors in Sao Paulo
    State, Brazil: an ecological analysis. BMJ open, 7:e016395, doi:10.1136/bmjopen–2017–016395.
    17. Downing, A., Forman, D., Gilthorpe, M. S., Edwards, K. L., and Manda, S. O. (2008). Joint disease mapping
    using six cancers in the Yorkshire region of England. International Journal of Health Geographics, 7:1–14,
    doi:10.1186/1476–072X–7–41.
    18. Felix, J. D., Zandonade, E., Amorim, M. H. C., and Castro, D. S. D. (2012). Evaluation of the plenitude of
    epidemiological variables of the Information System on Mortality of women with deaths from breast cancer
    in the Southeast Region - Brazil (1998 - 2007). Ciˆencia & Sa´ude Coletiva, 17:945–953, doi:10.1590/S1413–
    81232012000400016.
    19. Forouzanfar, M. H., Foreman, K. J., Delossantos, A. M., Lozano, R., Lopez, A. D., Murray, C. J., and
    Naghavi, M. (2011). Breast and cervical cancer in 187 countries between 1980 and 2010: a systematic
    analysis. The Lancet, 378:1461–1484, doi:10.1016/S0140–6736(11)61351–2.
    20. Gilks, W. R., Richardson, S., and Spiegelhalter, D. (1995). Markov Chain Monte Carlo in Practice. CRC
    Press, Boca Raton, USA.
    21. Goudie, R. J. B., Turner, R. M., De Angelis, D., and Thomas, A. (2020). MultiBUGS: A parallel implementation
    of the BUGS modelling framework for faster Bayesian inference. Journal of Statistical Software, 95:7,
    doi:10.18637/jss.v095.i07.
    22. Held, L., Nat´ario, I., Fenton, S. E., Rue, H., and Becker, N. (2005). Towards joint disease mappings. Statistical
    Methods in Medical Research, 14:61–82, doi:10.1191/0962280205sm389oa.
    23. Knorr-Held, L. and Best, N. G. (2001). A shared component model for detecting joint and selective clustering
    of two diseases. Journal of the Royal Statistical Society: Series A (Statistics in Society), 164:73–85,
    doi:10.1111/1467–985X.00187.
    24. Lawson, A. B. (2013). Statistical Methods in Spatial Epidemiology. John Wiley & Sons, New York, USA.
    25. Lawson, A. B. (2018). Bayesian disease mapping: hierarchical modeling in spatial epidemiology. Third
    Edition. Chapman and Hall/CRC, Boca Raton, USA.
    26. Lee, D. (2011). A comparison of conditional autoregressive models used in Bayesian disease mapping.
    Spatial and Spatio-Temporal Epidemiology, 2:79–89, doi:10.1016/j.sste.2011.03.001.
    27. Lunn, D., Jackson, C., Best, N., Thomas, A., and Spiegelhalter, D. (2013). The BUGS Book: A Practical
    Introduction to Bayesian Analysis. Chapman and Hall/CRC, London, UK.
    28. Martin, A. D., Quinn, K. M., and Park, J. H. (2011). MCMCpack: Markov chain Monte Carlo in R. Journal
    of Statistical Software, 42:1–21.
    29. Martinez, E. Z. and Achcar, J. A. (2014). Trends in epidemiology in the 21st century: time to adopt Bayesian
    methods. Cadernos de Sa´ude P´ublica, 30:703–714, doi:10.1590/0102–311X00144013.
    30. Martinez, E. Z. and Roza, D. L. (2020). Ecological analysis of adolescent birth rates in Brazil: Association
    with Human Development Index. Women and Birth, 33:e191–e198, doi:10.1016/j.wombi.2019.04.002.
    31. Morais, R. M. and Costa, A. L. (2017). An evaluation of the Brazilian Mortality Information System. Sa´ude
    em Debate, 41:101–117, doi:10.1590/0103–11042017S09.
    32. Moran, P. A. P. (1950). Notes on continuous stochastic phenomena. Biometrika, 37:17–23,
    doi:10.2307/2332142.
    33. Raei, M., Schmid, V. J., and Mahaki, B. (2018). Bivariate spatiotemporal disease mapping of cancer of the
    breast and cervix uteri among Iranian women. Geospatial Health, 13:645, doi:10.4081/gh.2018.645.
    34. Rocha-Brischiliari, S. C., Andrade, L., Nihei, O. K., Brischiliari, A., Hortelan, M. S., Carvalho, M. D. B., and
    Pelloso, S. M. (2018). Spatial distribution of breast cancer mortality: Socioeconomic disparities and access
    to treatment in the state of Paran´a, Brazil. PLoS One, 13:e0205253, doi:10.1371/journal.pone.0205253.
    35. Rodeiro, C. L. V. and Lawson, A. B. (2005). An evaluation of the edge effects in disease map modelling.
    Computational Statistics & Data Analysis, 49:45–62, doi:10.1016/j.csda.2004.05.012.
    36. Rue, H. and Held, L. (2005). Gaussian Markov Random Fields: Theory and Applications. Chapman and
    Hall/CRC, Boca Raton, USA.
    37. Silva-Lizzi, E. A., Nunes, A. A., and Martinez, E. Z. (2016). Spatiotemporal analysis of AIDS incidence
    among adults in Brazil. Current HIV Research, 14:466–475, doi:10.2174/1570162x14666160802153025.
    38. Stoppa, G., Mensi, C., Fazzo, L., Minelli, G., Manno, V., Consonni, D., Biggeri, A., and Catelan, D. (2022).
    Spatial analysis of shared risk factors between pleural and ovarian cancer mortality in Lombardy (Italy).
    International Journal of Environmental Research and Public Health, 13:645, doi:10.3390/ijerph19063467.
    39. Tulchinsky, T. H. and Varavikova, E. A. (2014). The New Public Health, Third Edition. Academic Press,
    London, UK.
    40. Ulm, K. (1990). Simple method to calculate the confidence interval of a standardized mortality ratio (SMR).
    American Journal of Epidemiology, 131:373–37, doi:10.1093/oxfordjournals.aje.a115507.

Most read articles by the same author(s)