Main Article Content
Abstract
In this paper, we introduce maximum likelihood and Bayesian parameter estimation for the exponentiated discrete Weibull (EDW) distribution in presence of randomly right censored data. We also consider the inclusion of a cure fraction in the model. The performance of the maximum likelihood estimation approach is assessed by conducting an extensive simulation study with different sample sizes and different values for the parameters of the EDW distribution. The usefuness of the proposed model is illustrated with two examples considering real data sets.
Keywords
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following License
CC BY: This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
References
-
1. Achcar, J. A., Coelho-Barros, E. A., and Mazucheli, J. (2012). Cure fraction models using mixture and nonmixture models. Tatra Mountains Mathematical Publications, 51:1–9.
2. Akaike, H. (1974). A new look at statistical model identification. IEEE Transactions on Automatic Control, 19:716–723.
3. Alamatsaz, M., Dey, S., Dey, T., and Harandi, S. (2016). Discrete generalized Rayleigh distribution. Pakistan Journal of Statistics, 32:1–20.
4. Broyden, C. (1970). The convergence of a class of double-rank minimization algorithms. Journal of the Institute of Mathematics and Its Applications, 6:76–90.
5. Cardial, M., Fachini-Gomes, J., and Nakano, E. (2020). Exponentiated discrete Weibull distribution for censored data. Brazilian Journal of Biometrics, 38:35–56.
6. Carlin, B. and Louis, T. (2001). Bayes and Empirical Bayes Methods for Data Analysis, 2nd ed. Chapman and Hall, Boca Raton.
7. Chachaj, A., Wi´sniewski, J., Rybka, J., Butrym, A., Biedro´n, M., Krzystek-Korpacka, M., Fleszar, M. G., Karczewski, M., Wr´obel, T., Mazur, G., Gamian, A., and Szuba, A. (2018). Asymmetric and symmetric dimethylarginines and mortality in patients with hematological malignancies a prospective study. PLoS One, 13:e0197148.
8. Chen, M. H. and Shao, Q. M. (1999). Monte carlo estimation of Bayesian credible and HPD intervals. Journal of Computational and Graphical Statistics, 8:69–92.
9. Cowles, M. and Carlin, B. (1996). Markov chain Monte Carlo convergence diagnostics: a comparative review. Journal of the American Statistical Association, 91(434):883–904.
10. El Adlouni, S., Favre, A., and Bob´ee, B. (2006). Comparison of methodologies to assess the convergence of Markov chain Monte Carlo methods. Computational Statistics & Data Analysis, 50(10):2685–2701.
11. El-Morshedy, M., Eliwa, M., El-Gohary, A., and Khalil, A. (2020). Bivariate exponentiated discrete Weibull distribution: statistical properties, estimation, simulation and applications. Mathematical Sciences, 14:29–42.
12. Farewell, V. T. (1982). The use of mixture models for the analysis of survival data with long-term survivors. Biometrics, 38:1041–1046.
13. Fletcher, R. (1970). A new approach to variable metric algorithms. Computer Journal, 13:317–322.
14. Geisser, S. and Eddy, W. F. (1979). A predictive approach to model selection. Journal of the American Statistical Association, 74:153–160.
15. Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2014). Bayesian Data Analysis, volume 2. CRC press Boca Raton, FL.
16. Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In Bernardo, J. M., Berger, J., Dawid, A. P., Smith, A. F. M. (Eds.), Bayesian Statistics, volume 4, pages 169–193. Oxford University Press.
17. Hamdeni, T. and Gasmi, S. (2020). The Marshall–Olkin generalized defective Gompertz distribution for surviving fraction modeling. Communications in Statistics – Simulation and Computation, pages 1–14.
18. Henningsen, A. and Toomet, O. (2011). maxlik: A package for maximum likelihood estimation in R. Computational Statistic, 26:443–458.
19. Hurvich, C. M. and Tsai, C. L. (1989). Regression and time series model selection in small samples. Biometrika, 76:297–307.
20. Ibrahim, J. G., Chen, M. H., and Sinha, D. (2014). Bayesian Survival Analysis. Wiley Online Library.
21. Johnson, N. L. and Kotz, S. (1982). Developments in discrete distributions, 1969-1980, correspondent paper. International Statistical Review/Revue Internationale de Statistique, 50:71–101.
22. Manyau, M. C. P., Mudzviti, T., Rusakaniko, S., Mberi, E. T., Maponga, C. C., and Morse, G. D. (2020). Survival of HIV-infected patients with high-grade non-Hodgkins lymphomas: A retrospective study of experiences in Zimbabwe. PLoS ONE, 15:e0239344.
23. Martin, A. D. and Quinn, K. M. (2006). Applied Bayesian inference in R using MCMCpack. R News, 6:2–7.
24. Martinez, E. Z., Achcar, J. A., J´acome, A. A., and Santos, J. S. (2013). Mixture and non-mixture cure fraction models based on the generalized modified Weibull distribution with an application to gastric cancer data. Computer Methods and Programs in Biomedicine, 112:343–355.
25. Millar, R. B. (2011). Maximum likelihood estimation and inference: with examples in R, SAS and ADMB. John Wiley & Sons.
26. Morbiducci, M., Nardi, A., and Rossi, C. (2003). Classification of cured individuals in survival analysis: the mixture approach to the diagnostic-prognostic problem. Computational Statistics & Data Analysis, 41:515–529.
27. Nakagawa, T. and Osaki, S. (1975). The discrete Weibull distribution. IEEE Transactions on Reliability, 24:300–301.
28. Nekoukhou, V., Alamatsaz, M. H., and Bidram, H. (2013). Discrete generalized exponential distribution of a second type. Statistics, 47:876–887.
29. Nekoukhou, V. and Bidram, H. (2015). The exponentiated discrete Weibull distribution. SORT Statistics and Operations Research Transactions, 39:127–146.
30. Nelder, J. and Mead, R. (1965). A simplex method for function minimization. Computer Journal, 7:308–313.
31. Ramos, P., Guzman, D., Mota, A., Rodrigues, F., and Louzada, F. (2020). Sampling with censored data: a practical guide. arXiv preprint arXiv:2011.08417.
32. Rocha, R., Nadarajah, S., Tomazella, V., and Louzada, F. (2017). A new class of defective models based on the Marshall–Olkin family of distributions for cure rate modeling. Computational Statistics & Data Analysis, 107:48–63.
33. Roy, D. (2004). Discrete Rayleigh distribution. IEEE Transactions on Reliability, 53:255–260.
34. Schwarz, G. E. (1978). Estimating the dimension of a model. Annals of Statistics, 6:461–464.
35. Scudilio, J., Calsavara, V. F., Rocha, R., Louzada, F., Tomazella, V., and Rodrigues, A. S. (2019). Defective models induced by gamma frailty term for survival data with cured fraction. Journal of Applied Statistics, 46:484–507.