Main Article Content

Abstract

In this study, the authors of the current work describe a novel exponentiated Weibull distribution that they have invented. The study was written by the writers of the current work. It is required to analyze those properties once the pertinent mathematical properties have been derived. In addition to the dispersion index, the anticipated value, variance, skewness, and kurtosis are also statistically examined. The dispersion index is likewise examined. Other beneficial shapes that the new density can assume include "bathtub," "right skewed," "bimodal and left skewed," "unimodal and left skewed," and "bimodal and right skewed." Additionally, these forms can be merged to create a "bathtub." The term "bathtub (U-HRF)," "constant," "monotonically increasing," "upside down-increasing (reversed U-increasing)," "J-HRF," "upside down-constant," "increasing-constant," or "upside down (reversed U)" may be used to describe the new rate of failure. The greatest likelihood method's efficiency is assessed via graphical analysis. The main measures for this procedure’s evaluation are biases and mean squared errors. The reader is given a scenario that graphically displays the adaptability and value of the innovative distribution through the use of three separate sets of actual data.

Keywords

Weibull Distribution Rényi entropy index Farlie Gumbel Morgenstern copula Real Data Modeling Hazard Function Clayton copula

Article Details

Author Biographies

Mahmoud Ali Selim, Applied College, King Khalid University, KSA

Department of Statistics, Faculty of Commerce, Al-Azhar University, Egypt.

Emadeldin I. A. Ali, Department of Economics, College of Economics and Administrative Sciences, Al Imam Mohammad Ibn Saud Islamic University, Saudi Arabia

Department of Mathematics, Statistics, and Insurance, Faculty of Business, Ain Shams University, Egypt

How to Cite
Refaie, M. K. A., Yaqoob, A. A., Selim, M. A., & Ali, E. I. A. (2023). A Novel Version of the Exponentiated Weibull Distribution: Copulas, Mathematical Properties and Statistical Modeling. Pakistan Journal of Statistics and Operation Research, 19(3), 491-519. https://doi.org/10.18187/pjsor.v19i3.4089

References

  1. Aarset, M. V. (1987). How to identify a bathtub hazard rate. IEEE Transactions on Reliability, 36(1), 106-108.‏
  2. Al-babtain, A. A., Elbatal, I. and Yousof, H. M. (2020a). A New Flexible Three-Parameter Model: Properties, Clayton Copula, and Modeling Real Data. Symmetry, 12(3), 440.
  3. Al-Babtain, A. A., Elbatal, I. and Yousof, H. M. (2020b). A new three parameter Fréchet model with mathematical properties and applications. Journal of Taibah University for Science, 14(1), 265-278.‏
  4. Aboraya, M., Ali, M. M., Yousof, H. M. and Ibrahim, M. (2022a). A New Flexible Probability Model: Theory, Estimation and Modeling Bimodal Left Skewed Data. Pakistan Journal of Statistics and Operation Research, 18(2), 437-463.
  5. Aboraya, M., Ali, M. M., Yousof, H. M. and Ibrahim, M. (2022b). A Novel Lomax Extension with Statistical Properties, Copulas, Different Estimation Methods and Applications. Bulletin of the Malaysian Mathematical Sciences Society, 45, 85-120.
  6. Abouelmagd, T. H. M., Hamed, M. S., Almamy, J. A., Ali, M. M., Yousof, H. M. and Korkmaz, M. C. (2019a). Extended Weibull log-logistic distribution. Journal of Nonlinear Sciences and Applications, 12(8), 523-534.
  7. Abouelmagd, T. H. M., Hamed, M. S., Hamedani, G. G., Ali, M. M., Goual, H., Korkmaz, M. C. and Yousof, H. M. (2019b). The zero truncated Poisson Burr X family of distributions with properties, characterizations, applications, and validation test. Journal of Nonlinear Sciences and Applications, 12(5), 314-336.‏
  8. Abouelmagd, T. H. M., Hamed, M. S., Handique, L., Goual, H., Ali, M. M., Yousof, H. M. and Korkmaz, M. C. (2019c). A new class of distributions based on the zero truncated Poisson distribution with properties and applications, Journal of Nonlinear Sciences & Applications (JNSA), 12(3), 152-164.
  9. Abouelmagd, T. H. M., Hamed, M. S. and Yousof, H. M. (2019d). Poisson Burr X Weibull distribution. Journal of Nonlinear Sciences & Applications, 12(3), 173-183.
  10. Ahmed, B. and Yousof, H. M. (2022). A New Group Acceptance Sampling Plans based on Percentiles for the Weibull Fréchet Model. Statistics, Optimization & Information Computing, forthcoming.
  11. Ahmed, B., Ali, M. M. and Yousof, H. M. (2022a). A Novel G Family for Single Acceptance Sampling Plan with Application in Quality and Risk Decisions, Annals of Data Science, 10.1007/s40745-022-00451-3
  12. Ahmed, B., Chesneau, C. Ali, M. M. and Yousof, H. M. (2022b). Amputated Life Testing for Weibull Reciprocal Weibull Percentiles: Single, Double and Multiple Group Sampling Inspection Plans with Applications, Pakistan Journal of Statistics and Operation Research, 18(4), 995-1013.
  13. Bjerkedal, T., (1960). Acquisition of resistance in guinea pigs infected with different doses of virulent tubercle bacilli1. American Journal of Epidemiology. 72(1): p. 130-148.
  14. Burr, I.W., (1942). Cumulative Frequency Functions. The Annals of Mathematical Statistics. 13(2): p. 215-232.
  15. Elgohari, H. and Yousof, H. M. (2020a). A Generalization of Lomax Distribution with Properties, Copula and Real Data Applications. Pakistan Journal of Statistics and Operation Research, 16(4), 697-711.
  16. Elgohari, H. and Yousof, H. M. (2021b). A New Extreme Value Model with Different Copula, Statistical Properties and Applications. Pakistan Journal of Statistics and Operation Research, 17(4), 1015-1035.
  17. Elgohari, H. and Yousof, H. M. (2020c). New Extension of Weibull Distribution: Copula, Mathematical Properties and Data Modeling. Statistics, Optimization & Information Computing, 8(4), 972-993.
  18. Elgohari, H., Ibrahim, M. and Yousof, H. M. (2021). A New Probability Distribution for Modeling Failure and Service Times: Properties, Copulas and Various Estimation Methods. Statistics, Optimization & Information Computing, 8(3), 555-586.
  19. Elsayed, H. A. and Yousof, H. M. (2019). A new Lomax distribution for modeling survival times and taxes revenue data sets. Journal of Statistics and Applications, 2(1), 35-58.
  20. Elsayed, H. A. H. and Yousof, H. M. (2019). The Burr X Nadarajah Haghighi distribution: statistical properties and application to the exceedances of flood peaks data. Journal of Mathematics and Statistics, 15, 146-157.
  21. Elsayed, H. A. H. and Yousof, H. M. (2020). The generalized odd generalized exponential Fréchet model: univariate, bivariate and multivariate extensions with properties and applications to the univariate version. Pakistan Journal of Statistics and Operation Research, 529-544.
  22. Elsayed, H. A. H. and Yousof, H. M. (2021). Extended Poisson Generalized Burr XII Distribution. Journal of Applied Probability and Statistics, 16(1), 01-30.
  23. Emam, W.; Tashkandy, Y.; Goual, H.; Hamida, T.; Hiba, A.; Ali, M.M.; Yousof, H.M.; Ibrahim, M. (2023a) A New One-Parameter Distribution for Right Censored Bayesian and Non-Bayesian Distributional Validation under Various Estimation Methods. Mathematics 2023, 11, 897. https://doi.org/10.3390/math11040897
  24. Emam, W.; Tashkandy, Y.; Hamedani, G.G.; Shehab, M.A.; Ibrahim, M.; Yousof, H.M. (2023b) A Novel Discrete Generator with Modeling Engineering, Agricultural and Medical Count and Zero‐Inflated Real Data with Bayesian, and Non‐Bayesian Inference. Mathematics 2023, 11, 1125. https://doi.org/10.3390/math1105112
  25. Cordeiro, G. M., Afify, A. Z., Yousof, H. M., Pescim, R. R. and Aryal, G. R. (2017). The exponentiated Weibull-H family of distributions: Theory and Applications. Mediterranean Journal of Mathematics, 14(4), 155.‏
  26. Goual, H. and Yousof, H. M. (2020). Validation of Burr XII inverse Rayleigh model via a modified chi-squared goodness-of-fit test. Journal of Applied Statistics, 47(3), 393-423.‏
  27. Ibrahim. M., Aidi, K., Ali, M. M. and Yousof, H. M. (2021). The Exponential Generalized Log-Logistic Model: Bagdonavičius-Nikulin test for Validation and Non-Bayesian Estimation Methods. Communications for Statistical Applications and Methods, 29(1), 681–705.
  28. Ibrahim, M., Ali, M. M., Goual, H. and Yousof, H. M. (2022). Censored and uncensored validation for the double Burr XII model using a new Nikulin-Rao-Robson goodness-of-fit test with Bayesian and non-Bayesian estimation, Pakistan Journal of Statistics and Operation Research, 18(4), 2022.
  29. Ibrahim, M.; Emam, W.; Tashkandy, Y.; Ali, M.M.; Yousof, H.M. (2023) Bayesian and Non-Bayesian Risk Analysis and Assessment under Left-Skewed Insurance Data and a Novel Compound Reciprocal Rayleigh Extension. Mathematics 2023, 11, 1593. https://doi.org/10.3390/ math11071593
  30. Ibrahim, M., Yadav, A. S., Yousof, H. M., Goual, H. and Hamedani, G. G. (2019). A new extension of Lindley distribution: modified validation test, characterizations and different methods of estimation. Communications for Statistical Applications and Methods, 26(5), 473-495.‏
  31. Khedr, A. M., Nofal, Z. M., El Gebaly, Y. M. and Yousof, H. M. A Novel Family of Compound Probability Distributions: Properties, Copulas, Risk Analysis and Assessment under a Reinsurance Revenues Data Set.‏ Thailand Statistician, forthcoming.
  32. Khalil, M. G., Hamedani, G. G. and Yousof, H. M. (2019). The Burr X exponentiated Weibull model: Characterizations, mathematical properties and applications to failure and survival times data. Pakistan Journal of Statistics and Operation Research, 141-160.‏
  33. Khalil, M. G., Yousof, H. M., Aidi, K., Ali, M. M., Butt, N. S. and Ibrahim. M. (2023). Modified Bagdonavicius-Nikulin Goodness-of-fit Test Statistic for the Compound Topp Leone Burr XII Model with Various Censored Applications. Statistics, Optimization & Information Computing, forthcoming.
  34. Khalil, M. G., Yousof, H. M., Aidi, K., Ali, M. M., Butt, N. S. and Ibrahim. M. (2023). Modified Bagdonavicius-Nikulin Goodness-of-fit Test Statistic for the Compound Topp Leone Burr XII Model with Various Censored Applications. Statistics, Optimization & Information Computing, forthcoming.
  35. Korkmaz, M. Ç., Alizadeh, M., Yousof, H. M. and Butt, N. S. (2018a). The generalized odd Weibull generated family of distributions: statistical properties and applications. Pakistan Journal of Statistics and Operation Research, 541-556.
  36. Korkmaz, M. Ç., Yousof, H. M., Hamedani, G. G. and Ali, M. M. (2018b). The Marshall-Olkin generalized G Poisson family of distributions. Pak. J. Statist, 34(3), 251-267.
  37. Lee, E. T. and Wang, J. (2003). Statistical methods for survival data analysis (Vol. 476). John Wiley & Sons.‏
  38. Mansour, M. M., Ibrahim, M., Aidi, K., Butt, N. S., Ali, M. M., Yousof, H. M. and Hamed, M. S. (2020a). A New Log-Logistic Lifetime Model with Mathematical Properties, Copula, Modified Goodness-of-Fit Test for Validation and Real Data Modeling. Mathematics, 8(9), 1508.‏
  39. Mansour, M. M., Butt, N. S., Ansari, S. I., Yousof, H. M., Ali, M. M. and Ibrahim, M. (2020b). A new exponentiated Weibull distribution’s extension: copula, mathematical properties and applications. Contributions to Mathematics, 1 (2020) 57–66. DOI: 10.47443/cm.2020.0018
  40. Mansour, M., Korkmaz, M. Ç., Ali, M. M., Yousof, H. M., Ansari, S. I. and Ibrahim, M. (2020c). A generalization of the exponentiated Weibull model with properties, Copula and application. Eurasian Bulletin of Mathematics, 3(2), 84-102.‏
  41. Mansour, M., Rasekhi, M., Ibrahim, M., Aidi, K., Yousof, H. M. and Elrazik, E. A. (2020d). A New Parametric Life Distribution with Modified Bagdonavičius–Nikulin Goodness-of-Fit Test for Censored Validation, Properties, Applications, and Different Estimation Methods. Entropy, 22(5), 592.‏
  42. Mansour, M., Yousof, H. M., Shehata, W. A. M. and Ibrahim, M. (2020e). A new two parameter Burr XII distribution: properties, copula, different estimation methods and modeling acute bone cancer data. Journal of Nonlinear Science and Applications, 13(5), 223-238.
  43. Mansour, M. M., Butt, N. S., Yousof, H. M., Ansari, S. I. and Ibrahim, M. (2020f). A Generalization of Reciprocal Exponential Model: Clayton Copula, Statistical Properties and Modeling Skewed and Symmetric Real Data Sets. Pakistan Journal of Statistics and Operation Research, 16(2), 373-386.‏
  44. Murthy, D.N.P., Xie, M. and Jiang, R. (2004). Weibull Models. John Wiley and Sons, Hoboken, New Jersey.
  45. Rinne, H. (2009). The Weibull Distribution: A Handbook. CRC Press, Boca Raton, Florida.
  46. Smith, R.L. AND J. NAYLOR, (1987). A comparison of maximum likelihood and Bayesian estimators for the three‐parameter Weibull distribution. Journal of the Royal Statistical Society: Series C, 36(3) 358-369.
  47. Refaie, M. K. A. (2018). Extended Poisson-exponentiated Weibull distribution: theoretical and computational aspects. pak. j. statist, 34(6), 513-530.
  48. Refaie, M. K. A. (2019). A new two-parameter exponentiated Weibull model with properties and applications to failure and survival times. International Journal of Mathematical Archive, 10(2), 1-13.
  49. Saber, M. M., Hamedani, G. G., Yousof, H. M. But, N. S., Ahmed, B. and Ibrahim, M. (2022) A Family of Continuous Probability Distributions: Theory, Characterizations, Properties and Different Copulas, CRC Press, Taylor & Francis Group.
  50. Shehata, W. A. M. and Yousof, H. M. (2022). A novel two-parameter Nadarajah-Haghighi extension: properties, copulas, modeling real data and different estimation methods. Statistics, Optimization & Information Computing, 10(3), 725-749.
  51. Shehata, W. A. M. and Yousof, H. M. (2021). The four-parameter exponentiated Weibull model with Copula, properties and real data modeling. Pakistan Journal of Statistics and Operation Research, 17(3), 649-667.
  52. Shehata, W. A. M., Yousof, H. M. and Aboraya, M. (2021). A Novel Generator of Continuous Probability Distributions for the Asymmetric Left-skewed Bimodal Real-life Data with Properties and Copulas . Pakistan Journal of Statistics and Operation Research, 17(4), 943-961.
  53. Shehata, W. A. M., Butt, N. S., Yousof, H. and Aboraya, M. (2022). A New Lifetime Parametric Model for the Survival and Relief Times with Copulas and Properties. Pakistan Journal of Statistics and Operation Research, 18(1), 249-272.
  54. Tashkandy, Y., Emam, W., Ali, M. M., Yousof, H. M., Ahmed, B. (2023). Quality Control Testing with Experimental Practical Illustrations under the Modified Lindley Distribution Using Single, Double, and Multiple Acceptance Sampling Plans. Mathematics. 2023; 11(9):2184. https://doi.org/10.3390/math11092184
  55. Yadav, A. S., Shukla, S., Goual, H., Saha, M. and Yousof, H. M. (2022). Validation of xgamma exponential model via Nikulin-Rao-Robson goodness-of- fit test under complete and censored sample with different methods of estimation. Statistics, Optimization & Information Computing, 10(2), 457-483.
  56. Yousof, H. M., Afify, A. Z., Cordeiro, G. M., Alzaatreh, A. and Ahsanullah, M. (2017a). A New Four-Parameter Weibull Model for Lifetime Data. Journal of Statistical Theory and Applications, 16(4), 448-466.
  57. Yousof, H. M., Ali, M. M., Hamedani, G. G., Aidi, K. & Ibrahim, M. (2022). A new lifetime distribution with properties, characterizations, validation testing, different estimation methods. Statistics, Optimization & Information Computing, 10(2), 519-547.
  58. Yousof, H. M., Ansari, S. I., Tashkandy, Y., Emam, W., Ali, M. M., Ibrahim, M., Alkhayyat, S. L. (2023a). Risk Analysis and Estimation of a Bimodal Heavy-Tailed Burr XII Model in Insurance Data: Exploring Multiple Methods and Applications. Mathematics. 2023; 11(9):2179. https://doi.org/10.3390/math11092179
  59. Yousof, H.M.; Emam, W.; Tashkandy, Y.; Ali, M.M.; Minkah, R.; Ibrahim, M. (2023b) A Novel Model for Quantitative Risk Assessment under Claim-Size Data with Bimodal and Symmetric Data Modeling. Mathematics 2023, 11, 1284. https://doi.org/10.3390/math11061284
  60. Yousof, H. M., Rasekhi, M., Afify, A. Z., Ghosh, I., Alizadeh, M. and Hamedani, G. G. (2017b). The beta Weibull-G family of distributions: theory, characterizations and applications. Pakistan Journal of Statistics, 33(2).‏
  61. Yousof, H.M.; Tashkandy, Y.; Emam, W.; Ali, M.M.; Ibrahim, M. (2023c) A New Reciprocal Weibull Extension for Modeling Extreme Values with Risk Analysis under Insurance Data. Mathematics 2023, 11, 966.
  62. Weibull, W., (1951). Wide applicability. Journal of applied mechanics. 103(730): p. 293-297.