Main Article Content

Abstract

The researchers in applied statistics are recently highly motivated to introduce new generalizations of distributions due to the limitations of the classical univariate distributions. In this study, we propose a new family called new generalized-X family of distributions. A special sub-model called new generalized-Weibull distribution is studied in detail. Some basic statistical properties are discussed in depth. The performance of the new proposed model is assessed graphically and numerically. It is compared with the five well-known competing models. The proposed model is the best in its performance based on the model adequacy and discrimination techniques. The analysis is done for the real data and the maximum likelihood estimation technique is used for the estimation of the model parameters. Furthermore, a simulation study is conducted to evaluate the performance of the maximum likelihood estimators. Additionally, we discuss a mixture of random effect models which are capable of dealing with the overdispersion and correlation in the data. The models are compared for their best fit of the data with these important features. The graphical and model comparison methods implied a good improvement in the combined model.

Keywords

NG-X Family NG-Weibull distribution Weibull distribution Simulation Combined model Random effect models Overdispersion correlation

Article Details

How to Cite
Roozegar, R., Tekle, G., & Hamedani, G. (2022). A New Generalized-X Family of Distributions: Applications, Characterization and a Mixture of Random Effect Models. Pakistan Journal of Statistics and Operation Research, 18(2), 483-504. https://doi.org/10.18187/pjsor.v18i2.4043

References

  1. Ahmad, Z., & Hussain, Z. (2017). The new extended flexible Weibull distribution and its applications. International Journal of Data Science and Analysis, 3(3), 18-23. DOI: https://doi.org/10.11648/j.ijdsa.20170303.11
  2. Andrews, D. F. and Herzberg, A. M. (2012). Data: A Collection of problems from many ï¬elds for the student and research worker. Springer Science & Business Media.
  3. Andrews, D. F., & Herzberg, A. M. (1985). Data: A collection of problems from many ï¬elds for the student and research worker. New York: Springer-Verlag. DOI: https://doi.org/10.1007/978-1-4612-5098-2
  4. Barlow, R. E., Toland, R. H., and Freeman, T. (1984). A Bayesian analysis of stress-rupture life of Kevlar/Epoxy spherical pressure vessels. Proceedings of the Canadian Conference in Applied Statistics, Edited by: Dwivedi, T. D. New York: MarcelDekker.
  5. Bebbington, M., Lai, C. D. and Zitikis, R. (2007). A flexible Weibull extension. Reliability Engineering and System Safety, 92, 719-726. DOI: https://doi.org/10.1016/j.ress.2006.03.004
  6. Breslow, N.E. and Lin, X. (1995). Bias correction in generalized linear mixed models with a single component of dispersion. Biometrika, 82, 81-91. DOI: https://doi.org/10.1093/biomet/82.1.81
  7. Carrasco M., Ortega E. M. and Cordeiro G. M. (2008). A generalized modiï¬ed Weibull distribution for lifetime modelling. Computational Statistics and Data Analysis, 53(2), 450-62. DOI: https://doi.org/10.1016/j.csda.2008.08.023
  8. Chipepa, F., Oluyede, B., & Makubate, B. (2020). The odd generalized half-logistic Weibull-G family of distributions: properties and applications. Journal of Statistical Modelling: Theory and Applications, 1(1), 65-89.
  9. Chipepa, F., Oluyede, B., & Peter, P. O. (2021). The Burr III-Topp-Leone-G family of distributions with applications. Heliyon, 7(4), e06534. DOI: https://doi.org/10.1016/j.heliyon.2021.e06534
  10. Cordeiro, G. M., Ortega, E. M., & Nadarajah, S. (2010). The Kumaraswamy Weibull distribution with application to failure data. Journal of the Franklin Institute, 347(8), 1399-1429. DOI: https://doi.org/10.1016/j.jfranklin.2010.06.010
  11. Falgore, J. Y., & Doguwa, S. I. (2020). Kumaraswamy-odd rayleigh-g family of distributions with applications. Open Journal of Statistics, 10(04), 719. DOI: https://doi.org/10.4236/ojs.2020.104045
  12. Famoye, F., Lee, C. and Olumolade, O. (2005). The beta-Weibull distribution. Journal of Statistical Theory and Applications, 4(2), 121-36.
  13. Galton, F. (1883). Enquiries into Human Faculty and its Development. London: Macmillan & Company. DOI: https://doi.org/10.1037/14178-000
  14. Glanzel, W. (1987). A characterization theorem based on truncated moments and its application to some distribution families. In Mathematical statistics and probability theory (pp. 75-84). Springer, Dordrecht. DOI: https://doi.org/10.1007/978-94-009-3965-3_8
  15. Glanzel, W. (1990). Some consequences of a characterization theorem based on truncated moments. Statistics,21(4), 613-618. DOI: https://doi.org/10.1080/02331889008802273
  16. Hamedani, G. G. (2013). On certain generalized gamma convolution distributions II (No. 484). Technical report.
  17. Kassahun, W., Neyens, T., Molenberghs, G., Faes, C., & Verbeke, G. (2012). Modeling overdispersed longitudinal binary data using a combined beta and normal random-effects model. Archives of Public Health, 70(1), 1-13. DOI: https://doi.org/10.1186/0778-7367-70-7
  18. Marinho, P. R. D., Bourguignon, M., & Marinho, M. P. R. D. (2016). Package 'Adequacy Model'.
  19. Maxwell, O., Chukwu, A. U., Oyamakin, O. S., & Khaleel, M. A. (2019). The Marshall-Olkin inverse Lomax distribution (MO-ILD) with application on cancer stem cell. Journal of Advances in Mathematics and Computer Science, 1-12. DOI: https://doi.org/10.9734/jamcs/2019/v33i430186
  20. Molenberghs, G., Verbeke, G., Demetrio, C. G., & Vieira, A. M. (2010). A family of generalized linear models for repeated measures with normal and conjugate random effects. Statistical science, 25(3), 325-347. DOI: https://doi.org/10.1214/10-STS328
  21. Molenberghs, G., Verbeke, G., & Demetrio, C. G. (2007). An extended random-effects approach to modeling repeated, overdispersed count data. Lifetime data analysis, 13(4), 513-531. DOI: https://doi.org/10.1007/s10985-007-9064-y
  22. Molenberghs, G. and Verbeke, G. (2005). Models for Discrete Longitudinal Data. New York: Springer.
  23. Moors, J. J. (1988). A quantile alternative for kurtosis. Journal of the Royal Statistical Society D, 37, 25-32. http://dx.doi.org/10.2307/234. DOI: https://doi.org/10.2307/2348376
  24. Moss, T. R. (2004). The reliability data handbook. Professional Engineering Publishing.
  25. Oliveira, I. R. C. D. (2014). Modeling strategies for complex hierarchical and overdispersed data in the life sciences (Doctoral dissertation, Universidade de Sao Paulo ˜ ).
  26. Oluyede, Broderick. â€The gamma-Weibull-G Family of distributions with applications.†Austrian Journal of Statistics 47, no. 1 (2018): 45-76. DOI: https://doi.org/10.17713/ajs.v47i1.155
  27. Package 'Adequacy Model'. February 19, 2015.http://www.r-project.org.
  28. Sarhan, A. M. and Apaloo, J. (2013). Exponentiated modiï¬ed Weibull extension distribution. Reliability Engineering and System Safety, 112, 137-144. DOI: https://doi.org/10.1016/j.ress.2012.10.013
  29. Silva, G. O., Ortega, E. M., & Cordeiro, G. M. (2010). The beta modiï¬ed Weibull distribution. Lifetime data analysis, 16(3), 409-430. DOI: https://doi.org/10.1007/s10985-010-9161-1