Main Article Content

Abstract

Analyzing the future values of anticipated claims is essential in order for insurance companies to avoid major losses caused by prospective future claims. This study proposes a novel three-parameter compound Lomax extension. The new density can be "monotonically declining", "symmetric", "bimodal-asymmetric", "asymmetric with right tail", "asymmetric with wide peak" or "asymmetric with left tail". The new hazard rate can take the following shapes: "J-shape", "bathtub (U-shape)", "upside down-increasing", "decreasing-constant", and "upside down-increasing". We use some common copulas, including the Farlie-Gumbel-Morgenstern copula, the Clayton copula, the modified Farlie-Gumbel-Morgenstern copula, Renyi's copula and Ali-Mikhail-Haq copula to present some new bivariate quasi-Poisson generalized Weibull Lomax distributions for the bivariate mathematical modelling. Relevant mathematical properties are determined, including mean waiting time, mean deviation, raw and incomplete moments, residual life moments, and moments of the reversed residual life. Two actual data sets are examined to demonstrate the unique Lomax extension's usefulness. The new model provides the lowest statistic testing based on two real data sets. The risk exposure under insurance claims data is characterized using five important risk indicators: value-at-risk, tail variance, tail-value-at-risk, tail mean-variance, and mean excess loss function. For the new model, these risk indicators are calculated. In accordance with five separate risk indicators, the insurance claims data are employed in risk analysis. We choose to focus on examining these data under five primary risk indicators since they have a straightforward tail to the left and only one peak. All risk indicators under the insurance claims data are addressed for numerical and graphical risk assessment and analysis.

Keywords

Clayton Copula Convex Density Farlie-Gumbel-Morgenstern Copula Insurance Claims Kernel Density Estimation Lomax Distribution Real Data Modeling Risk Analysis Risk Exposure Value-at-Risk

Article Details

How to Cite
Hamed, M. S., Cordeiro, G. M., & Yousof, H. M. (2022). A New Compound Lomax Model: Properties, Copulas, Modeling and Risk Analysis Utilizing the Negatively Skewed Insurance Claims Data. Pakistan Journal of Statistics and Operation Research, 18(3), 601-631. https://doi.org/10.18187/pjsor.v18i3.3652

References

  1. Aboraya, M., Ali, M. M., Yousof, H. M. and Ibrahim, M. (2022). A novel Lomax extension with statistical properties, copulas, different estimation methods and applications. Bulletin of the Malaysian Mathematical Sciences Society, (2022) https://doi.org/10.1007/s40840-022-01250-y DOI: https://doi.org/10.1007/s40840-022-01250-y
  2. Aboraya, M., M. Yousof, H. M., Hamedani, G. G. and Ibrahim, M. (2020). A new family of discrete distributions with mathematical properties, characterizations, Bayesian and non-Bayesian estimation methods. Mathematics, 8, 1648. DOI: https://doi.org/10.3390/math8101648
  3. Acerbi, C. and Tasche, D. (2002), On the coherence of expected shortfall, Journal of Banking and Finance, 26, 1487-1503. DOI: https://doi.org/10.1016/S0378-4266(02)00283-2
  4. Ahmed, B., Ali, M. M. and Yousof, H. M. (2022). A novel G family for single acceptance sampling pan with application in quality and risk decisions, Annals of Data Science, forthcoming.
  5. Ahmed, B. and Yousof, H. M. (2022). A new group acceptance sampling plans based on percentiles for the Weibull Fréchet model. Statistics, Optimization & Information Computing, forthcoming.
  6. Aidi, K., Butt, N. S., Ali, M. M., Ibrahim, M., Yousof, H. M. and Shehata, W. A. M. (2021). A modified Chi-square type test statistic for the double Burr X model with applications to right censored medical and reliability data. Pakistan Journal of Statistics and Operation Research, 17, 615-623. DOI: https://doi.org/10.18187/pjsor.v17i3.3888
  7. Al-babtain, A. A., Elbatal, I. and Yousof, H. M. (2020a). A new flexible three-parameter model: properties, Clayton copula, and modeling real data. Symmetry, 12, 440. DOI: https://doi.org/10.3390/sym12030440
  8. Al-Babtain, A. A., Elbatal, I. and Yousof, H. M. (2020b). A new three parameter Fréchet model with mathematical properties and applications. Journal of Taibah University for Science, 14, 265-278.‏ DOI: https://doi.org/10.1080/16583655.2020.1733767
  9. Ali, M. M., Ibrahim, M. and Yousof, H. M. (2021a). Expanding the Burr X model: properties, copula, real data modeling and different methods of estimation. Optimal Decision Making in Operations Research & Statistics: Methodologies and Applications, CRC Press, 21-42.
  10. Ali, M. M., Mikhail, N. N. and Haq, M. S. (1978). A class of bivariate distributions including the bivariate logistic. Journal of multivariate analysis, 8, 405-412.‏ DOI: https://doi.org/10.1016/0047-259X(78)90063-5
  11. Ali, M. M., Yousof, H. M. and Ibrahim, M. (2021b). A new version of the generalized Rayleigh distribution with copula, properties, applications and different methods of estimation. Optimal Decision Making in Operations Research & Statistics: Methodologies and Applications, CRC Press, 1-20.
  12. Alizadeh, M., Jamal, F., Yousof, H. M., Khanahmadi, M. and Hamedani, G. G. (2020a). Flexible Weibull generated family of distributions: characterizations, mathematical properties and applications. University Politehnica of Bucharest Scientific Bulletin-Series A-Applied Mathematics and Physics, 82, 145-150.‏
  13. Alizadeh, M., Rasekhi, M., Yousof, H. M., Ramires, T. G. and Hamedani G. G. (2018). Extended exponentiated Nadarajah-Haghighi model: mathematical properties, characterizations and applications. Studia Scientiarum Mathematicarum Hungarica, 55, 498-522. DOI: https://doi.org/10.1556/012.2018.55.4.1408
  14. Alizadeh, M., Yousof, H. M., Jahanshahi, S. M. A., Najibi, S. M. and Hamedani, G. G. (2020b). The transmuted odd log-logistic-G family of distributions. Journal of Statistics and Management Systems, 23, 1-27.‏ DOI: https://doi.org/10.1080/09720510.2019.1685228
  15. Altun, E., Yousof, H. M. and Hamedani, G. G. (2018a). A new log-location regression model with influence diagnostics and residual analysis. Facta Universitatis, Series: Mathematics and Informatics, 33, 417-449. DOI: https://doi.org/10.22190/FUMI1803417A
  16. Almazah, M.M.A., Almuqrin, M.A., Eliwa, M.S., El-Morshedy, M., Yousof, H.M. (2021). Modeling Extreme Values Utilizing an Asymmetric Probability Function. Symmetry, 13, 1730. DOI: https://doi.org/10.3390/sym13091730
  17. Altun, E., Yousof, H. M., Chakraborty, S. and Handique, L. (2018b). Zografos-Balakrishnan Burr XII distribution: regression modeling and applications. International Journal of Mathematics and Statistics, 19, 46-70. DOI: https://doi.org/10.15672/HJMS.2017.410
  18. Aryal, G. R. and Yousof, H. M. (2017). The exponentiated generalized-G Poisson family of distributions. Economic Quality Control, 32, 1-17. DOI: https://doi.org/10.1515/eqc-2017-0004
  19. Aryal, G. R., Ortega, E. M., Hamedani, G. G. and Yousof, H. M. (2017). The Topp-Leone generated Weibull distribution: regression model, characterizations and applications. International Journal of Statistics and Probability, 6, 126-141.‏ DOI: https://doi.org/10.5539/ijsp.v6n1p126
  20. Asgharzadeh, A. and Valiollahi, R. (2011). Estimation of the scale parameter of the Lomax distribution under progressive censoring, International Journal for Business and Economics 6, 37-48.
  21. Burr, I. W. (1942). Cumulative frequency functions. Annals of Mathematical Statistics, 13, 215-232. DOI: https://doi.org/10.1214/aoms/1177731607
  22. Burr, I. W. (1968). On a general system of distributions, III. The simple range. Journal of the American Statistical Association, 63, 636-643. DOI: https://doi.org/10.1080/01621459.1968.11009282
  23. Burr, I. W. (1973). Parameters for a general system of distributions to match a grid of α_3 and α_4. Communications in Statistics, 2, 1-21. DOI: https://doi.org/10.1080/03610917308548217
  24. Burr, I. W. and Cislak, P. J. (1968). On a general system of distributions: I. Its curve-shaped characteristics; II. The sample median. Journalof the American Statistical Association, 63, 627-635. DOI: https://doi.org/10.1080/01621459.1968.11009281
  25. Chesneau, C. and Yousof, H. M. (2021), On a special generalized mixture class of probabilistic models. Journal of Nonlinear Modeling and Analysis, 3, 71-92.
  26. Chesneau, C., Yousof, H. M., Hamedani, G. and Ibrahim, M. (2022). A New One-parameter Discrete Distribution: The Discrete Inverse Burr Distribution: Characterizations, Properties, Applications, Bayesian and Non-Bayesian Estimations. Statistics, Optimization & Information Computing, 10, 352-371. DOI: https://doi.org/10.19139/soic-2310-5070-1393
  27. Corbellini, A., Crosato, L., Ganugi, P. and Mazzoli, M. (2010). Fitting Pareto II distributions on firm size: Statistical methodology and economic puzzles. In Advances in Data Analysis (pp. 321-328). Birkhäuser Boston.‏ DOI: https://doi.org/10.1007/978-0-8176-4799-5_26
  28. Cordeiro, G. M., Ortega, E. M. and Popovic, B. V. (2015). The gamma-Lomax distribution. Journal of Statistical computation and Simulation, 85, 305-319. DOI: https://doi.org/10.1080/00949655.2013.822869
  29. Cramer, E. and Schemiedt, A.B. (2011). Progressively type-II censored competing risks data from Lomax distribution, Computational Statistics and Data Analysis 55, 1285–1303. DOI: https://doi.org/10.1016/j.csda.2010.09.017
  30. Elgohari, H. and Yousof, H. M. (2020a). A generalization of Lomax distribution with properties, copula and real data applications. Pakistan Journal of Statistics and Operation Research, 16, 697-711. DOI: https://doi.org/10.18187/pjsor.v16i4.3260
  31. Elgohari, H. and Yousof, H. M. (2021). A new extreme value model with different copula, statistical properties and applications. Pakistan Journal of Statistics and Operation Research, 17, 1015-1035. DOI: https://doi.org/10.18187/pjsor.v17i4.3471
  32. Elgohari, H. and Yousof, H. M. (2020b). New extension of Weibull distribution: copula, mathematical properties and data modeling. Statistics, Optimization & Information Computing, 8, 972-993. DOI: https://doi.org/10.19139/soic-2310-5070-1036
  33. Elgohari, H., Ibrahim, M. and Yousof, H. M. (2021). A new probability distribution for modeling failure and service times: properties, copulas and various estimation methods. Statistics, Optimization & Information Computing, 8(3), 555-586. DOI: https://doi.org/10.19139/soic-2310-5070-1101
  34. Figueiredo, F., Gomes, M. I. and Henriques-Rodrigues, L. (2017). Value-at-risk estimation and the PORT mean-of-order-p methodology. Revstat, 15, 187-204.
  35. Furman, E., Landsman, Z. (2006). Tail variance premium with applications for elliptical portfolio of risks. ASTIN Bulletin, 36, 433-462. DOI: https://doi.org/10.1017/S0515036100014586
  36. Farlie, D. J. G. (1960). The performance of some correlation coefficients for a general bivariate distribution. Biometrika, 47, 307-323. DOI: https://doi.org/10.1093/biomet/47.3-4.307
  37. Charpentier, A. (2014). Computational actuarial science with R. CRC press. DOI: https://doi.org/10.1201/b17230
  38. Goual, H., Yousof, H. M. and Ali, M. M. (2019). Validation of the odd Lindley exponentiated exponential by a modified goodness of fit test with applications to censored and complete data. Pakistan Journal of Statistics and Operation Research, 15, 745-771. DOI: https://doi.org/10.18187/pjsor.v15i3.2675
  39. Goual, H. and Yousof, H. M. (2020). Validation of Burr XII inverse Rayleigh model via a modified chi-squared goodness-of-fit test. Journal of Applied Statistics, 47, 393-423. DOI: https://doi.org/10.1080/02664763.2019.1639642
  40. Goual, H., Yousof, H. M. and Ali, M. M. (2020). Lomax inverse Weibull model: properties, applications, and a modified Chi-squared goodness-of-fit test for validation. Journal of Nonlinear Sciences & Applications, 13(6), 330-353. DOI: https://doi.org/10.22436/jnsa.013.06.04
  41. Gupta, R. C., Gupta, P. L. and Gupta, R. D. (1998). Modeling failure time data by Lehman alternatives. Communications in Statistics-Theory and methods, 27, 887-904. DOI: https://doi.org/10.1080/03610929808832134
  42. Gumbel, E. J. (1961). Bivariate logistic distributions. Journal of the American Statistical Association, 56, 335-349. DOI: https://doi.org/10.1080/01621459.1961.10482117
  43. Gumbel, E. J. (1960) Bivariate exponential distributions. Journ. Amer. Statist. Assoc., 55, 698-707. DOI: https://doi.org/10.1080/01621459.1960.10483368
  44. Hamedani, G. G., Altun, E, Korkmaz, M. C., Yousof, H. M. and Butt, N. S. (2018). A new extended G family of continuous distributions with mathematical properties, characterizations and regression modeling. Pakistan Journal of Statistics and Operation Research, 14, 737-758. DOI: https://doi.org/10.18187/pjsor.v14i3.2484
  45. Hamedani, G. G. Rasekhi, M., Najib, S. M., Yousof, H. M. and Alizadeh, M., (2019). Type II general exponential class of distributions. Pakistan Journal of Statistics and Operation Research, 15, 503-523. DOI: https://doi.org/10.18187/pjsor.v15i2.1699
  46. Hamedani, G. G. Yousof, H. M., Rasekhi, M., Alizadeh, M., Najibi, S. M. (2017). Type I general exponential class of distributions. Pakistan Journal of Statistics and Operation Research, 14, 39-55. DOI: https://doi.org/10.18187/pjsor.v14i1.2193
  47. Harris, C.M. (1968). The Pareto distribution as a queue service discipline, Operations Research 16, 307-313. DOI: https://doi.org/10.1287/opre.16.2.307
  48. Hogg, R.V. and Klugman, S.A., 1984, Loss Distributions (New York: John Wiley & Sons, Inc.). DOI: https://doi.org/10.1002/9780470316634
  49. Ibragimov, R. amd Prokhorov, A. (2017). Heavy Tails and Copulas: Topics in Dependence Modelling in Economics and Finance; World Scientific: Singapore.
  50. Ibrahim, M., Aidi, K., Ali, M. M. and Yousof, H. M. (2022a). A novel test statistic for right censored validity under a new Chen extension with applications in reliability and medicine. Annals of Data Science, forthcoming.
  51. Ibrahim, M., Ali, M. M. and Yousof, H. M. (2022b). The discrete analogue of the Weibull G family: properties, different applications, Bayesian and non-Bayesian estimation methods. Annals of Data Science, forthcoming. DOI: https://doi.org/10.1007/s40745-021-00327-y
  52. Ibrahim, M., Yadav, A. S., Yousof, H. M., Goual, H. and Hamedani, G. G. (2019). A new extension of Lindley distribution: modified validation test, characterizations and different methods of estimation. Communications for Statistical Applications and Methods, 26, 473-495. DOI: https://doi.org/10.29220/CSAM.2019.26.5.473
  53. Johnson, N. L. and Kotz, S. (1975) On some generalized Farlie-Gumbel-Morgenstern distributions. Commun. Stat. Theory, 4, 415-427. DOI: https://doi.org/10.1080/03610917508548400
  54. Johnson, N. L. and Kotz, S. (1977) On some generalized Farlie-Gumbel-Morgenstern distributions- II: Regression, correlation and further generalizations. Commun. Stat.Theory, 6, 485-496. DOI: https://doi.org/10.1080/03610927708827509
  55. Karamikabir, H., Afshari, M., Yousof, H. M., Alizadeh, M. and Hamedani, G. (2020). The Weibull Topp-Leone generated family of distributions: statistical properties and applications. Journal of The Iranian Statistical Society, 19, 121-161.‏ DOI: https://doi.org/10.29252/jirss.19.1.121
  56. Korkmaz, M. Ç., Altun, E., Yousof, H. M. and Hamedani, G. G. (2020). The Hjorth's IDB generator of distributions: properties, characterizations, regression modeling and applications. Journal of Statistical Theory and Applications, 19, 59-74.‏ DOI: https://doi.org/10.2991/jsta.d.200302.001
  57. Korkmaz, M. C. Yousof, H. M. and Hamedani G. G. (2018a). The exponential Lindley odd log-logistic G family: properties, characterizations and applications. Journal of Statistical Theory and Applications, 17, 554 - 571. DOI: https://doi.org/10.2991/jsta.2018.17.3.10
  58. Korkmaz, M. C., Yousof, H. M., Hamedani G. G. and Ali, M. M. (2018b). The Marshall–Olkin generalized G Poisson family of distributions, Pakistan Journal of Statistics, 34, 251-267.
  59. Landsman, Z. (2010). On the tail mean--variance optimal portfolio selection. Insur. Math. Econ., 46, 547-553. DOI: https://doi.org/10.1016/j.insmatheco.2010.02.001
  60. Lane, M.N. (2000). Pricing risk transfer transactions 1. ASTIN Bull. J. IAA, 30, 259-293. DOI: https://doi.org/10.2143/AST.30.2.504635
  61. Lemonte, A. J. and Cordeiro, G. M. (2013). An extended Lomax distribution. Statistics, 47, 800-816.‏ DOI: https://doi.org/10.1080/02331888.2011.568119
  62. Lomax, K.S. (1954). Business failures: Another example of the analysis of failure data, Journal of the American Statistical Association 49, 847-852. DOI: https://doi.org/10.1080/01621459.1954.10501239
  63. Mansour, M. M., Ibrahim, M., Aidi, K., Shafique Butt, N., Ali, M. M., Yousof, H. M. and Hamed, M. S. (2020a). A new log-logistic lifetime model with mathematical properties, copula, modified goodness-of-fit test for validation and real data modeling. Mathematics, 8, 1508. DOI: https://doi.org/10.3390/math8091508
  64. Mansour, M. M., Butt, N. S., Ansari, S. I., Yousof, H. M., Ali, M. M. and Ibrahim, M. (2020b). A new exponentiated Weibull distribution’s extension: copula, mathematical properties and applications. Contributions to Mathematics, 1, 57–66. DOI: https://doi.org/10.47443/cm.2020.0018
  65. Mansour, M., Korkmaz, M. C., Ali, M. M., Yousof, H. M., Ansari, S. I. and Ibrahim, M. (2020c). A generalization of the exponentiated Weibull model with properties, Copula and application. Eurasian Bulletin of Mathematics, 3, 84-102.
  66. Mansour, M., Rasekhi, M., Ibrahim, M., Aidi, K., Yousof, H. M. and Elrazik, E. A. (2020d). A new parametric life distribution with modified Bagdonavičius–Nikulin goodness-of-fit test for censored validation, properties, applications, and different estimation methods. Entropy, 22, 592. DOI: https://doi.org/10.3390/e22050592
  67. Mansour, M., Yousof, H. M., Shehata, W. A. and Ibrahim, M. (2020e). A new two parameter Burr XII distribution: properties, copula, different estimation methods and modeling acute bone cancer data. Journal of Nonlinear Science and Applications, 13, 223-238. DOI: https://doi.org/10.22436/jnsa.013.05.01
  68. Mansour, M. M., Butt, N. S., Yousof, H. M., Ansari, S. I. and Ibrahim, M. (2020f). A generalization of reciprocal exponential model: clayton copula, statistical properties and modeling skewed and symmetric real data sets. Pakistan Journal of Statistics and Operation Research, 16, 373-386. DOI: https://doi.org/10.18187/pjsor.v16i2.3298
  69. Merovci, F., Yousof, H. M. and Hamedani, G. G. (2020). The Poisson Topp Leone generator of distributions for lifetime data: theory, characterizations and applications. Pakistan Journal of Statistics and Operation Research, 16, 343-355.‏ DOI: https://doi.org/10.18187/pjsor.v16i2.3230
  70. Merovci, F., Alizadeh, M., Yousof, H. M. and Hamedani G. G. (2017). The exponentiated transmuted-G family of distributions: theory and applications, Communications in Statistics-Theory and Methods, 46, 10800-10822. DOI: https://doi.org/10.1080/03610926.2016.1248782
  71. Mohamed, H. S., Cordeiro, G. M., and Yousof, H. M. (2022a). The synthetic autoregressive model for the insurance claims payment data: modeling and future prediction. Optimization & Information Computing, forthcoming.
  72. Mohamed, H. S., Cordeiro, G. M., Minkah, R., Yousof, H. M. and Ibrahim, M. (2022b). A size-of-loss model for the negatively skewed insurance claims data: applications, risk analysis using different methods and statistical forecasting. Journal of Applied Statistics, forthcoming.
  73. Mohamed, H. S., Ali, M. M. and Yousof, H. M. (2022c). The Lindley Gompertz Model for Estimating the Survival Rates: Properties and Applications in Insurance, Annals of Data Science, forthcoming.
  74. Morgenstern, D. (1956). Einfache beispiele zweidimensionaler verteilungen. Mitteilingsblatt fur Mathematische Statistik, 8, 234-235.
  75. Murthy, D.N.P. Xie, M. and Jiang, R. (2004). Weibull Models, Wiley.
  76. Nascimento, A. D. C., Silva, K. F., Cordeiro, G. M., Alizadeh, M. and Yousof, H. M. (2019). The odd Nadarajah-Haghighi family of distributions: properties and applications. Studia Scientiarum Mathematicarum Hungarica, 56, 1-26. DOI: https://doi.org/10.1556/012.2019.56.2.1416
  77. Pougaza, D. B. and Djafari, M. A. (2011). Maximum entropies copulas. Proceedings of the 30th international workshop on Bayesian inference and maximum Entropy methods in Science and Engineering, 329-336. DOI: https://doi.org/10.1063/1.3573634
  78. Resnick, S.I. (1997), Discussion of the Danish data on large fire insurance losses. ASTIN Bulletin, 27, 139-151. DOI: https://doi.org/10.2143/AST.27.1.563211
  79. Rodriguez, R.N. (1977). A guide to the Burr type XII distributions. Biometrika, 64, 129-134. DOI: https://doi.org/10.1093/biomet/64.1.129
  80. Rodriguez-Lallena, J. A. and Ubeda-Flores, M. (2004). A new class of bivariate copulas. Statistics and Probability Letters, 66, 315-25. DOI: https://doi.org/10.1016/j.spl.2003.09.010
  81. Saber, M. M. and Yousof, H. M. (2022). Bayesian and classical tnference for generalized stress-strength parameter under generalized logistic distribution, Statistics, Optimization & Information Computing, forthcoming.
  82. Saber, M. M. Marwa M. Mohie El-Din and Yousof, H. M. (2022). Reliability estimation for the remained stress-strength model under the generalized exponential lifetime distribution, Journal of Probability and Statistics, 2021, 1-10. DOI: https://doi.org/10.1155/2021/7363449
  83. Shehata, W. A. M. and Yousof, H. M. (2021). The four-parameter exponentiated Weibull model with copula, properties and real data modeling. Pakistan Journal of Statistics and Operation Research, 17, 649-667. DOI: https://doi.org/10.18187/pjsor.v17i3.3311
  84. Shehata, W. A. M. and Yousof, H. M. (2022). A novel two-parameter Nadarajah-Haghighi extension: properties, copulas, modeling real data and different estimation methods. Statistics, Optimization & Information Computing, 10, 725-749. DOI: https://doi.org/10.19139/soic-2310-5070-1250
  85. Shehata, W. A. M., Butt, N. S., Yousof, H. and Aboraya, M. (2022). A new lifetime parametric model for the survival and relief times with copulas and properties. Pakistan Journal of Statistics and Operation Research, 18, 249-272. DOI: https://doi.org/10.18187/pjsor.v18i1.3930
  86. Shehata, W. A. M., Yousof, H. M. and Aboraya, M. (2021). A novel generator of continuous probability distributions for the asymmetric left-skewed bimodal real-life data with properties and copulas. Pakistan Journal of Statistics and Operation Research, 17, 943-961. DOI: https://doi.org/10.18187/pjsor.v17i4.3903
  87. Stein, J. D., Lum, F., Lee, P. P., Rich III, W. L. and Coleman, A. L. (2014). Use of health care claims data to study patients with ophthalmologic conditions. Ophthalmology, 121, 1134-1141. DOI: https://doi.org/10.1016/j.ophtha.2013.11.038
  88. Tadikamalla, P. R. (1980). A look at the Burr and related distributions, International Statistical Review, 48, 337-344. DOI: https://doi.org/10.2307/1402945
  89. Tasche, D. (2002), Expected Shortfall and Beyond, Journal of Banking and Finance, 26, 1519-1533. DOI: https://doi.org/10.1016/S0378-4266(02)00272-8
  90. Wirch J. (1999), Raising Value at Risk,North American Actuarial Journal, 3, 106-115. DOI: https://doi.org/10.1080/10920277.1999.10595804
  91. Yadav, A. S., Goual, H., Alotaibi, R. M., Ali, M. M. and Yousof, H. M. (2020). Validation of the Topp-Leone-Lomax model via a modified Nikulin-Rao-Robson goodness-of-fit test with different methods of estimation. Symmetry, 12, 57.
  92. Yadav, A. S., Shukla, S., Goual, H., Saha, M. and Yousof, H. M. (2022). Validation of xgamma exponential model via Nikulin-Rao-Robson goodness-of- fit test under complete and censored sample with different methods of estimation. Statistics, Optimization & Information Computing, 10, 457-483. DOI: https://doi.org/10.19139/soic-2310-5070-1107
  93. Yousof, H. M., Afify, A. Z., Abd El Hadi, N. E., Hamedani, G. G. and Butt, N. S. (2016). On six-parameter Fréchet distribution: properties and applications. Pakistan Journal of Statistics and Operation Research, 12, 281-299.‏ DOI: https://doi.org/10.18187/pjsor.v12i2.1327
  94. Yousof, H. M., Afify, A. Z., Nadarajah, S., Hamedani, G. and Aryal, G. R. (2018a). The Marshall-Olkin generalized-G family of distributions with Applications. Statistica, 78, 273-295.‏
  95. Yousof, H. M., Ali, M. M., Hamedani, G. G., Aidi, K. and Ibrahim, M. (2022). A new lifetime distribution with properties, characterizations, validation testing, different estimation methods. Statistics, Optimization & Information Computing, 10, 519-547. DOI: https://doi.org/10.19139/soic-2310-5070-1222
  96. Yousof, H. M., Alizadeh, M., Jahanshahiand, S. M. A., Ramires, T. G., Ghosh, I. and Hamedani, G. G. (2017). The transmuted Topp-Leone G family of distributions: theory, characterizations and applications. Journal of Data Science, 15, 723-740.‏ DOI: https://doi.org/10.6339/JDS.201710_15(4).00008
  97. Yousof, H. M., Altun, E., Ramires, T. G., Alizadeh, M. and Rasekhi, M. (2018b). A new family of distributions with properties, regression models and applications, Journal of Statistics and Management Systems, 21, 163-188. DOI: https://doi.org/10.1080/09720510.2017.1411028
  98. Yousof, H. M., Altun, E., Rasekhi, M., Alizadeh, M., Hamedani, G. G. and Ali, M. M. (2019). A new lifetime model with regression models, characterizations and applications. Communications in Statistics-Simulation and Computation, 48, 264-286. DOI: https://doi.org/10.1080/03610918.2017.1377241
  99. Yousof, H. M., Chesneau, C., Hamedani, G. and Ibrahim, M. (2021). A new discrete distribution: properties, characterizations, modeling real count data, Bayesian and non-Bayesian estimations. Statistica, 81, 135-162.