Main Article Content


The Internet of things ((IoT) consisted of physical devices networks such as sensors, home appliances, electronics, and software’s. It enables us to collect and exchange data in several fields. After data collection from IoT, variable selection is considered a major problem because many variables are involved in real life datasets. The current study focused on large data analysis of the problem of model selection, including interaction terms. The dataset used in this study is taken from solar drier with moisture ratio removal (%) as dependent variable while ambient temperature, chamber temperature, collector temperature, chamber relative humidity, ambient relative humidity, and solar radiation as independent variables. LASSO with Huber M, LASSO with Hampel M and LASSO with Bisquare M are proposed in this study. Comparison of proposed techniques are made with ridge regression and OLS (ordinary least square) after multicollinearity test and coefficient test. MAPE (mean absolute percentage error) is calculated for the efficient selected model to forecast. As a result, the model using LASSO with Bisquare-M provides a minimum MAPE value for the best efficient model. Thus, the resulting model with the selected variables can be used to predict Moisture Ratio Removal (%) to determine seaweed drying behavior.


seaweed all possible model selection criteria LASSO robust

Article Details

How to Cite
Javaid, A., Ismail, M. T., & M.K.M. Ali. (2021). Efficient Model Selection for Moisture Ratio Removal of Seaweed Using Hybrid Of Sparse And Robust Regression Analysis: Efficient Model Selection for Moisture Ratio Removal of Seaweed . Pakistan Journal of Statistics and Operation Research, 17(3), 669-681.


  1. Abdullah, N., Hajijubok, Z., & J.B, N. J. (2008). Multiple Regression Models of the Volumetric Stem Biomass Multiple Regression Models of the Volumetric Stem Biomass, 7(7), 492–502.
  2. Ahmed, U. I., Ying, L., Bashir, M. K., Abid, M., & Zulfiqar, F. (2017). Status and determinants of small farming households’ food security and role of market access in enhancing food security in rural Pakistan. PLoSONE, 12(10), 1–15. DOI:
  3. Ali M.K.M, A. Fudholi, M. S. Muthuvalu, J. Sulaiman and S. M. Yasir (2017) November. Implications of drying temperature and humidity on the drying kinetics of seaweed. AIP Conference Proceedings.1905 (1) DOI:
  4. Ali, M. K. M., Sulaiman, J., Yasir, S. M., & Ruslan, M. (2015). The effectiveness of sauna technique on the drying period and kinetics of seaweed Kappaphycus alvarezii using solar drier. Advances Envitl Agri Sci, 1, 86-95.
  5. Dissa, A. O., Bathiebo, D. J., Desmorieux, H., Coulibaly, O., & Koulidiati, J. (2011). Experimental characterisation and modelling of thin layer direct solar drying of Amelie and Brooks mangoes. Energy, 36(5), 2517-252 DOI:
  6. Draper, N. R., & Smith, H. (1998). Applied regression analysis (Vol. 326). John Wiley & Sons. DOI:
  7. Gad, A. M., & Qura, M. E. (2016). Regression Estimation in the Presence of Outliers : A Comparative Study. International Journal of Probability and Statistics, 5(3), 65–72.
  8. Giacalone, M., Panarello, D., & Mattera, R. (2018). Multicollinearity in regression: an efficiency comparison between L p-norm and least squares estimators. Quality & Quantity, 52(4), 1831-1859. DOI:
  9. Gujarati, D. N. (2004). Basic Econometrics. The McGraw− Hill Companies.
  10. Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). Springer series in statistics.
  11. Hocking, R. R. (1976). A Biometrics invited paper. The analysis and selection of variables in linear regression. Biometrics, 32(1), 1-49. DOI:
  12. Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55-67. DOI:
  13. Javaid, A., Muthuvalu, M. S., Sulaiman, J., Ismail, M. T., & Ali, M. K. M. (2019, December). Forecast the moisture ratio removal during seaweed drying process using solar drier. In AIP Conference Proceedings (Vol. 2184, No. 1, p. 050016). AIP Publishing LLC. DOI:
  14. Joseph, A. B. Multiple Alliant International University. 1, 3-5
  15. Khuneswari, G., H.J. Zainodin, G. Darmesah, & S.H. Sim (2008) Malaysia Journal for Mathematical sciences, 4, 190-195.
  16. Malavade, V. N., & Akulwar, P. K. (2017). Role of IoT in Agriculture. In IOSR Journal of Computre Engineering 1(13), 56–57
  17. Mendelsohn, R., & Dinar, A. (2003). Climate, Water, and Agriculture. Land Economics, 79(3), 328–341. DOI:
  18. Midi, H., Bagheri, A., & Imon, A. H. M. R. (2011). A Monte Carlo simulation study on high leverage collinearity-enhancing observation and its effect on multicollinearity pattern. Sains Malaysiana, 40(12), 1437–1447.
  19. Miller, A. (2002). Subset selection in regression. Chapman and Hall/CRC. DOI:
  20. Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2011). Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute.
  21. Ogutu, J. O., Schulz-Streeck, T., & Piepho, H. P. (2012, December). Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions. In BMC proceedings 6(2). DOI:
  22. Pender, J., Nkonya, E., Jagger, P., Sserunkuuma, D., & Ssali, H. (2004). Strategies to increase agricultural productivity and reduce land degradation: evidence from Uganda. Agricultural economics, 31(2‐3), 181-195. DOI:
  23. Ramanathan, R. (2002) Introductory Econometrics with application. 5th edition.:Thomson Learning Ohio, South Western, United States
  24. Rischbeck, P., Elsayed, S., Mistele, B., Barmeier, G., Heil, K., & Schmidhalter, U. (2016). Data fusion of spectral, thermal and canopy height parameters for improved yield prediction of drought stressed spring barley. European Journal of Agronomy, 78, 44–59. DOI:
  25. Shariff, N. S. M., & Ferdaos, N. A. (2017). An Application of Robust Ridge Regression Model in the Presence of Outliers to Real Data Problem. Journal of Physics: Conference Series PAPER, 890(1). DOI:
  26. Stuart, C. (2011). Robust regression. Guide to Statistics.
  27. Tibshirani, R. (1996). Regression Shrinkage and Selection via the LASSO. Journal of the Royal Statistical Society . Series B ( Methodological ), 58(1), 267–288. DOI:
  28. Xu, J., & Ying, Z. (2010). Simultaneous Estimation and Variable Selection in Median Regression using Lasso-type penalty. Annals of the Institute of Statistical Mathematics, 62(3), 487–514. DOI:
  29. Yahaya, A. H., Norianai, A., & Jubok, Z. H. (2013). UTM, 29(1), 11–16.
  30. Zhang, K., Zhe, S., Cheng, C., Wei, Z., Chen, Z., Chen, H.,Jiang,G.,Qi,Y.,Ye, J. (2016). Annealed Sparsity via Adaptive and Dynamic Shrinking.22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’16, 1325–1334. DOI:
  31. Zhao, Y., Ogden, R. T., & Reiss, P. T. (2012). Wavelet-based LASSO in Functional Linear Regression. Journal of Computational and Graphical Statistics, 21(3), 600–617. DOI:
  32. Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., & Smith, G. M. (2009). Limitations of linear regression applied on ecological data. In Mixed effects models and extensions in ecology with R .11-33. DOI: