Main Article Content

Abstract

Process capability analysis has been widely applied in the field of quality control to monitor the performance of industrial processes. Hence, lifetime performance index CL is used to measure the potential and performance of a process. In the present study, we construct a maximum likelihood estimator of CL under Burr Type III distribution based on the progressive Type II censored sample. The maximum likelihood estimator of CL is then utilized to develop the hypothesis testing procedure in the condition of known L. Finally, one practical example and Monte Carlo simulation are given to assess the behavior of the lifetime performance index under given significance level.

Keywords

Process capability index Lifetime performance index Burr Type III distribution Progressive Type II censoring Maximum likelihood estimator

Article Details

How to Cite
Hassan, A., Assar, S., & Selmy, A. (2021). Assessing the Lifetime Performance Index of Burr Type III Distribution under Progressive Type II Censoring: Assessing the Lifetime Performance Index of Burr Type III Distribution under Progressive Censoring. Pakistan Journal of Statistics and Operation Research, 17(3), 633-647. https://doi.org/10.18187/pjsor.v17i3.3635

References

  1. Ahmadi,V. M., Doostparast, M. and Ahmdi, J. (2013). Estimating the lifetime performance index with Weibull distribution based on progressive first-failure censoring scheme. Journal of Computational and Applied Mathematics, 239, 93-102. DOI: https://doi.org/10.1016/j.cam.2012.09.006
  2. Altindag, O., Ankaya, M. N., Yalinkaya, A. and Aydogdu, H. (2017). Statistical inference for the Burr Type III distribution under Type II censored data. Communication Science. 66(2), 297-310. DOI: https://doi.org/10.1501/Commua1_0000000820
  3. Burr, W. I. (1942).Cumulative frequency functions. The Annals of Mathematical Statistics, 13(2), 215-232. DOI: https://doi.org/10.1214/aoms/1177731607
  4. Cohen, A. C. (1965). Maximum likelihood estimation in the Weibull distribution based on complete and cesored samples.Technometrics,7( 4), 579-588. DOI: https://doi.org/10.1080/00401706.1965.10490300
  5. Gamchi, F. V., Alma, O. G. and Belaghi, R. A. (2019). Classical and Bayesian inference for Burr Type-III distribution based on progressive Type-II hybrid censored data. Mathematical Science, 13(2),79-95. DOI: https://doi.org/10.1007/s40096-019-0281-9
  6. Gildeh, S. B. and Nadi, A. A. (2016). Estimating the lifetime performance index of products for two-parameter exponential distribution with the progressive first-failure censored sample, International Journal for Quality Research, 10(2), 389–406.
  7. Hassanein, A. W. (2018).The lifetime performance index of power lomax distribution based on progressive first-failure censoring scheme. Journal of Statistics Applications & Probability An International Journal, 7(2), 333-341. DOI: https://doi.org/10.18576/jsap/070210
  8. Hong, C. W., Lee, C. W. and Wu, J. W. (2012). Computational procedure of performance assessment of lifetime index of products for the weibull distribution with the progressive first-failure-censored sampling plan. Journal of Applied Mathematics, Article ID 717184, 13 pages. DOI: https://doi.org/10.1155/2012/717184
  9. Kane, V. E., (1986).Process capability indices. Journal of Quality Technology, 18, 41-52. DOI: https://doi.org/10.1080/00224065.1986.11978984
  10. Lee, C. W., Wu, W. J. and Hong, W. C. (2009). Assessing the lifetime performance index of products with the exponential distribution under progressively type II right censored samples. Journal of Computational and Applied Mathematics, 231, 648–656. DOI: https://doi.org/10.1016/j.cam.2009.04.018
  11. Mann, N. R. and Fertig, K. W. (1973). Tables for obtaining Weibull condence bounds and tolerance bounds based on best linear invariant estimates of parameters of the extreme-value distribution. Technometrics 15(1), 87-101. DOI: https://doi.org/10.1080/00401706.1973.10489013
  12. Montgomery, D. C. (1985). Introduction to Statistical Quality Control. John Wiley and Sons Inc., New York.
  13. Panahi, H. (2017). Estimation of the Burr Type III distribution with application in unified hybrid censored sample of fracture toughness. Journal of Applied Statistics, 44, 2575-2592. DOI: https://doi.org/10.1080/02664763.2016.1258549
  14. Viveros, R. and Balakrishnan, N. (1994). Interval estimation of parameters of life from progressively censored data, Technometrics, 36, 84-91. DOI: https://doi.org/10.1080/00401706.1994.10485403
  15. Wijekularathna, D. K. and Subedi, N. (2019). Implementing the lifetime performance index of products with a two-parameter Rayleigh distribution under a progressively Type II right censored sample. Journal of Mathematics and Statistics, 5, 28–40.
  16. Wu, C. C., Chen, L. C. and Chen, Y. J. (2013). Decision procedure of lifetime performance assessment of Rayleigh products under progressively Type II right censored samples. International Journal of Information & Management Sciences, 24(3), 225-237.
  17. Wu, J. W., Lee, W. C., Hong, C. W. and Yeh, S. Y. (2014). Implementing lifetime performance index of Burr XII products with progressively type II right censored sample. International Journal of Innovative Computing, Information and Control, 10(2), 671-693.

DB Error: Unknown column 'Array' in 'where clause'