Main Article Content
Abstract
In this paper, a discrete inverted Kumaraswamy distribution; which is a discrete version of the continuous inverted Kumaraswamy variable, is derived using the general approach of discretization of a continuous distribution. Some important distributional and reliability properties of the discrete inverted Kumaraswamy distribution are obtained. Maximum likelihood and Bayesian approaches are applied to estimate the model parameters. A simulation study is carried out to illustrate the theoretical results. Finally, a real data set is applied.
Keywords
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following License
CC BY: This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
References
-
Abd AL-Fattah, A. M., EL-Helbawy, A. A. and AL-Dayian, G.R. (2017). Inverted Kumaraswamy Properts and Estimation. Pakistan Journal of Statistics, 33(1): 37-61.
Alamatsaz, M. H., Dey, S. Dey, T. and Shams Harandi, S. (2016). Discrete Generalized Rayleigh Distribution. Pakistan Journal of Statistics, 32 (1): 1-20.
AL-Huniti, A. A. and AL-Dayian, G. R. (2012). Discrete Burr Type III Distribution. American Journal of Mathematics and Statistics. 2(5): 145-152.
AL-Hussaini E K, Jaheen Z F (1992). Bayesian prediction bounds for the Burr Type XII failure model. Communication in Statistics-Theory and methods, 24(7): 1829– 1842.
Arnold, B., Balakrishnan, N. and Najaraja, H. N. (2008). A First Course in Order Statistics. John-Wiley and Sons, New York.
Borah, M. and Hazarika, J. (2017). Discrete Shanker Distribution and Its Derived Distributions. Biometrics and Biostatistics International Journal, 5(4).
Bracquemond, C. and Gaudoin, O. (2003). A Survey on Discrete Lifetime Distributions. International Journal of Reliability, Quality and Safety Engineering, 10(1): 69-98.
Chakraborty, S. (2015). Generating Discrete Analogues of Continuous Probability Distributions – A Survey of Methods and Constructions. Journal of Statistical Distributions and Applications, 2(6):1-30.
Chakraborty, S. and Chakravorty, D. (2016). A new Discrete Probability Distribution with Integer Support on(-∞,∞). Communication in Statistics –Theory and Methods, 45(2): 492-505.
Gomez-Deniz, E. and Calderin-Ojeda, E. (2011). The Discrete Lindley Distribution: Properties and Application. Journal of Statistics Computation and Simulation, 81(11): 1405-1416.
Hegazy, M. A., EL-Helbawy, A. A., Abd EL-Kader, R. E. and AL-Dayian, G.R. (2018). Discrete Gompertz Distribution: Properties and Estimation. Journal of Biostatistics and Biometric Applications 3(3): 307.
Hinkley, D. (1977). On quick choice of power transformations. Journal of the Royal Statistical Society Series C (Applied Statistics), 26 (1): 67-69.
Hussain T. and Ahmad M. (2014). Discrete Inverse Rayleigh Distribution. Pakistan Journal of Statistics, 30(2): 203-222.
Hussain, T. Aslam, M. and Ahmad, M. (2016). A Two Parameter Discrete Lindley Distribution. Revista Colombiana de Estadistica, 39 (1):45-61.
Inusah, S. and Kozubowski, J. T. (2006). A Discrete Analogue of the Laplace Distribution. Journal of Statistics Planning Inference 136: 1090-1102.
Jazi, M. A., Lai, C. D. and Alamatsaz, M. H. (2010). A Discrete Inverse Weibull Distribution and Estimation of its Parameters. Elsevier Statistical Methodology, 7 (2):121- 132.
Kamari H, Bevrani H, Kamary K (2015). Bayesian Estimation of Discrete Burr Distribution with Two Parameters. Journal of Statistics and Mathematical, 1(2): 62-68.
Khan, M. S. A., Khalique, A. and Abouammoh, A. M. (1989). On Estimating Parameters in a Discrete Weibull Distribution. IEEE Transactions on Reliability, 38(3): 348-350.
Krishna, H. and Pundir, P. S. (2009). Discrete Burr and Discrete Pareto Distributions. Statistical Methodology, 6: 177-188.
Lai, C. D. (2013). Issues Concerning Constructions of Discrete Lifetime Models. Quality Technology and Quantitative Management, 10(2): 251-262.
Lai, C. D. (2014). Generalized Weibull Distribution. Springer Heidelberg, New York, Dordrecht, London.
Lehmann, E. L. and Casella, G. (1998). Theory of Point Estimation, John-Wiley and Sons, New York.
Lekshmi, S. and Sebastian, S. (2014). A Skewed Generalized Discrete Laplace Distribution. International Journal of Mathematics and Statistics Invention, 2: 95-102.
Migdadi, H. S. (2014). Bayesian Inference for the Scale parameter of the Discrete Rayleigh Distribution. MAGNT Research Report, 3 (2), 1073-1080.
Nakagawa, T. and Osaki, S. (1975). The Discrete Weibull Distribution. IEEE Transactions on Reliability, 24 (5): 300-301.
Nekoukhou, V., Alamatsaz, M. H., and Bidram, H. (2012). A Discrete Analog of Generalized Exponential Distribution. Communication in Statistics-Theory and Methods, 41 (11): 2000-2013.
Para, B.A. and Jan, T. R. (2014). Discrete Generalized Burr-Type XII Distribution. Journal of Modern Applied Statistical Method, 13 (2):244-258.
Para, B. A. and Jan, T. R. (2016). On Discrete Tree Parameter Burr Type XII and Discrete Lomax Distributions and Their Applications to Model count Data from Medical Science. Biometrics and Biostatistics International Journal, 4(2): 1-15.
Rohatgi, V. K. and Saleh, E. A. K. (2001). An Introduction to Probability andStatistics.2nd Edition, John- Wiley and Sons, New York.
Roy, D. (2003). Discrete Normal Distribution. Communication in Statistics-Theory and Methods, 32 (10): 1871-1883.
Roy, D. (2004). Discrete Rayleigh Distribution. IEEE Transactions on Reliability, 53(2): 255-260.
Roy, D. and Gupta, R. P. (1992). Classifications of Discrete Lives. Microelectronics and Reliability, R-34(3): 253-255.
Sarhan, A. M. (2017). A two-Parameter Discrete Distribution with a Bathtub Hazard Shape.Communications for Statistical Applications and Methods, 24 (1): 15–27.
Xie, M., Gaudoin, O. and Bracquemond, C. (2002). Redefining Failure Rate Function for Discrete Distribution. International Journal of Reliability, Quality and Safety Engineering, 9(3): 275-286.