Main Article Content

Abstract

The Huber M-estimator is proposed in this study as a robust method for estimating the parameters of the cumulative odds model, which includes a logistic link function and polytomous explanatory variables. With the help of an intensive Monte Carlo simulation study carried out using the statistical software R, this study evaluates the performance of the maximum likelihood estimator (MLE) and the robust technique developed. Bias, RMSE, and the Lipsitz Statistic are used to measure comparisons. When conducting the simulation study, different sample sizes, contamination proportions, and error standard deviations are considered. Preliminary findings indicate that the M-estimator with Huber weight estimates produces the best results for parameter estimation and overall model fitting compared to the MLE. As an illustration, the procedure is applied to real-world data of students' final exam grades as measured by two different estimators.

Keywords

Cumulative Odds Model Maximum Likelihood Estimator Ordinal Response Model Robust M-estimator Students' Final Exam Grades

Article Details

How to Cite
Zulkifli, F. B., Mohmed, Z. B., & Azmee, N. A. B. (2022). Huber M-estimator for Cumulative Odds Model with Application to the Measurement of Students’ Final Exam Grades. Pakistan Journal of Statistics and Operation Research, 18(2), 337-347. https://doi.org/10.18187/pjsor.v18i2.2996

References

  1. Agresti, A. (2010). Analysis of Ordinal Categorical Data (2nd ed.). John Wiley & Sons, Inc. DOI: https://doi.org/10.1002/9780470594001
  2. Al-Taweel, Y., & Sadeek, N. (2020). A comparison of different methods for building Bayesian kriging models. Pakistan Journal of Statistics and Operation Research, 16(1), 73-82. DOI: https://doi.org/10.18187/pjsor.v16i1.2921
  3. Albert, J., & Chib, S. (1995). Bayesian Residual Analysis for Binary Response Regression Models. Biometrika, 82(4), 747. DOI: https://doi.org/10.1093/biomet/82.4.747
  4. Albert, J. H., & Chib, S. (1993). Bayesian Analysis of Binary and Polychotomous Response Data. Journal of the American Statistical Association, 88(422), 669-679. DOI: https://doi.org/10.1080/01621459.1993.10476321
  5. Croux, C., Haesbroeck, G., & Ruwet, C. (2013). Robust estimation for ordinal regression. Journal of Statistical Planning and Inference, 143(9), 1486-1499. DOI: https://doi.org/10.1016/j.jspi.2013.04.008
  6. Franses, P. H., & Paap, R. (2010). Quantitative models in marketing research. Cambridge University Press.
  7. Hampel, F. R., Ronchetti, E., Rousseeuw, P. J., & Stahel, W. A. (1986). Robust statistics : the approach based on influence functions. Wiley.
  8. Huber, P. . (1981). Robust Statistics. J. Wiley & Sons. DOI: https://doi.org/10.1002/0471725250
  9. Huber, P. J., & Ronchetti, E. (2009). Robust Statistics (2nd ed.). J. Wiley & Sons. DOI: https://doi.org/10.1002/9780470434697
  10. Iannario, M., Clara, A., & Piccolo, D. (2016). Robustness issues for CUB models. TEST. DOI: https://doi.org/10.1007/s11749-016-0493-3
  11. Iannario, M., Monti, A. C., Piccolo, D., & Ronchetti, E. (2017). Robust inference for ordinal response models. 11, 3407-3445. DOI: https://doi.org/10.1214/17-EJS1314
  12. Jiang, Y., Wang, Y. G., Fu, L., & Wang, X. (2019). Robust Estimation Using Modified Huber's Functions With New Tails. Technometrics, 61(1), 111-122. DOI: https://doi.org/10.1080/00401706.2018.1470037
  13. Mahdizadeh, M., & Strzalkowska-Kominiak, E. (2017). Resampling based inference for a distribution function using censored ranked set samples. Computational Statistics, 32(4), 1285-1308. DOI: https://doi.org/10.1007/s00180-017-0716-4
  14. Maronna, R. A., Martin, R. D., & Yohai, V. (2006). Robust Statistics: Theory and Methods. J. Wiley & Sons. DOI: https://doi.org/10.1002/0470010940
  15. McCullagh, P. (1980). Regression models for ordinal data. Journal of the Royal Statistical Society. Series B, 42, 109-142. DOI: https://doi.org/10.1111/j.2517-6161.1980.tb01109.x
  16. Moustaki, I., & Victoria-Feser, M.-P. (2006). Bounded-Influence Robust Estimation in Generalized Linear Latent Variable Models. Journal of the American Statistical Association, 101(474), 644-653. DOI: https://doi.org/10.1198/016214505000001320
  17. Rousseeuw, P. J., & Leroy, A. M. (1987). Robust Regression and Outlier Detection. John Wiley & Sons, Inc. DOI: https://doi.org/10.1002/0471725382
  18. Scalera, V., Iannario, M., & Monti, A. C. (2021). Robust link functions. A Journal of Theoretical and Applied Statistics, 55(4), 963-977. DOI: https://doi.org/10.1080/02331888.2021.1987436
  19. Tutz, G. (2014). Regression for Categorical Data (Issue May). Cambridge University Press.