Main Article Content

Abstract

We introduce a new extension of the Fréchet distribution for modeling the extreme values. The new model generalizes eleven distributions at least, five of them are quite new. Some important mathematical properties of the new model are derived. We assess the performance of the maximum likelihood estimators (MLEs) via a simulation study. The new model is better than some other important competitive models in modeling the breaking stress data, the glass fibers data and the relief time data.

Keywords

Extreme Values Moments Estimation Odd Log-Logistic Family Fréchet distribution

Article Details

How to Cite
Abd El Khaleq, R. H. (2022). The Generalized Odd Log-Logistic Fréchet Distribution for Modeling Extreme Values. Pakistan Journal of Statistics and Operation Research, 18(3), 649-674. https://doi.org/10.18187/pjsor.v18i3.2902

References

  1. Abayomi, A. (2019). Transmuted half normal distribution: Properties and application. Mathematical Theory and Modeling, 9, 14–26.
  2. Abdullahi, U. K., & Ieren, T. G. (2018). On the inferences and applications of transmuted exponential Lomax distribution. International Journal of Advanced Statistics and Probability, 6, 30–36, doi:10.14419/ijasp.v6i1.8129. DOI: https://doi.org/10.14419/ijasp.v6i1.8129
  3. Abdul-Moniem, I. B. (2015). Transmuted Burr Type III Distribution. Journal of Statistics: Advances in Theory and Applications, 14, 37–47. DOI: https://doi.org/10.18642/jsata_7100121524
  4. Abdul-Moniem, I. B., & Seham, M. (2015). Transmuted Gompertz Distribution. Computational and Applied Mathematics Journal, 1, 88–96.
  5. Afify, A. Z., Hamedani, G. G., Ghosh, I., & Mead, M. E. (2015). The transmuted Marshall-Olkin Fréchet distribution: Properties and applications. International Journal of Statistics and Probability, 4, 132–148. DOI: https://doi.org/10.5539/ijsp.v4n4p132
  6. Afify, A. Z., Nofal, Z. M., Yousof, H. M., El-Gebaly, Y. M., & Butt, N. S. (2015). The transmuted Weibull-Lomax distribution: Properties and application. Pak. j. stat. oper. res., 11, 135–152, doi:10.18187/pjsor.v11i1.956. DOI: https://doi.org/10.18187/pjsor.v11i1.956
  7. Afify, A. Z., Yousof, H. M., Butt, N. S., & Hamedani, G. G. (2016). The transmuted Weibull-Pareto distribution. Pak. J. Statist., 32, 183–206.
  8. Ahmad, A., Ahmad, S. P., & Ahmad, A. (2014). Transmuted inverse Rayleigh distribution: A generalization of the inverse Rayleigh distribution. Mathematical Theory and Modeling, 4, 90–98.
  9. Ahmad, A., Ahmad, S. P., & Ahmed, A. (2015). Characterization and Estimation of Transmuted Rayleigh Distribution. Journal of Statistics Applications & Probability, 4, 315–321, doi:10.12785/jsap/040216.
  10. Ahmad, K., Ahmad, S. P., & Ahmed, A. (2015). Structural Properties of Transmuted Weibull Distribution. Journal of Modern Applied Statistical Methods, 14, 141–158, doi:10.22237/jmasm/1446351120. DOI: https://doi.org/10.22237/jmasm/1446351120
  11. Alizadeh, M., Merovci, F., & Hamedani, G. G. (2017). Generalized transmuted family of distributions: Properties and applications. Hacettepe Journal of Mathematics and Statistics, 46, 645–667, doi:10.15672/HJMS.201610915478. DOI: https://doi.org/10.15672/HJMS.201610915478
  12. AL-Kadim, K. A. (2018). Proposed Generalized Formula for Transmuted Distribution. Journal of University of Babylon, 26, 66–74, doi:10.1515/eqc-2017–0027.
  13. AL-Kadim, K. A., & Mohammed, M. H. (2017). The cubic transmuted Weibull distribution. Journal of University of Babylon, 3, 862–876.
  14. Alzaatreh, A., Lee, C., & Famoye, F. (2013). A new method for generating families of continuous distributions. METRON, 71, 63–79, doi:10.1007/s40300-013-0007-y. DOI: https://doi.org/10.1007/s40300-013-0007-y
  15. Ansari, S. I., & Eledum, H. (2018). An Extension of Pareto Distribution. Journal of Statistics Applications & Probability, 7, 443–455. DOI: https://doi.org/10.18576/jsap/070305
  16. Aryal, G. R. (2013). Transmuted Log-Logistic distribution. Journal of Statistics Applications & Probability, 2, 11–20. DOI: https://doi.org/10.12785/jsap/020102
  17. Aryal, G. R., & Tsokos, C. P. (2009). On the transmuted extreme value distribution with application. Nonlinear Analysis: Theory, Methods and Applications, 71, 1401–1407, doi:10.1016/j.na.2009.01.168. DOI: https://doi.org/10.1016/j.na.2009.01.168
  18. Aryal, G. R., & Tsokos, C. P. (2011). Transmuted Weibull distribution: A generalization of the Weibull probability distribution. European Journal of Pure and Applied Mathematics, 4, 89–102.
  19. Ashour, S. K., & Eltehiwy, M. A. (2013a). Transmuted exponentiated Lomax distribution. Australian Journal of Basic and Applied Sciences, 7, 658–667.
  20. Ashour, S. K., & Eltehiwy, M. A. (2013b). Transmuted exponentiated modified Weibull distribution. International Journal of Basic and Applied Sciences, 2, 258–269, doi:10.14419/ijbas.v2i3.1074. DOI: https://doi.org/10.14419/ijbas.v2i3.1074
  21. Ashour, S. K., & Eltehiwy, M. A. (2013c). Transmuted Lomax distribution. American Journal of Applied Mathematics and Statistics, 1, 121–127, doi:10.12691/ajams-1-6–3. DOI: https://doi.org/10.12691/ajams-1-6-3
  22. Aslam, M., Hussain, Z., & Asghar, Z. (2018). Cubic Transmuted-G Family of Distributions and Its Properties. Stochastics and Quality Control, N/A. DOI: https://doi.org/10.1515/eqc-2017-0027
  23. Bakouch, H. S., Jamal, F., Chesneau, C., & Nasir, A. (2017). A new transmuted family of distributions: Properties and estimation with applications. $$.
  24. Balaswamy, S. (2018). Transmuted Half Normal Distribution. International Journal of Scientific Research in Mathematical and Statistical Sciences, 5, 163–170. DOI: https://doi.org/10.26438/ijsrmss/v5i4.163170
  25. Bhatti, F. A., Hamedani, G. G., Sheng, W., & Ahmad, M. (2019). Cubic Rank Transmuted Modified Burr III Pareto Distribution: Development, Properties, Characterizations and Applications. International Journal of Statistics and Probability, 8, 94–112, doi:10.5539/ijsp.v8n1p94. DOI: https://doi.org/10.5539/ijsp.v8n1p94
  26. Bourguignon, M., Ghosh, I., & Cordeiro, G. M. (2016). General Results for the Transmuted Family of Distributions and New Models. Journal of Probability and Statistics, 2016, Article ID 7208425, 12 pages, doi:10.1155/2016/7208425. DOI: https://doi.org/10.1155/2016/7208425
  27. Bourguignon, M., Leão, J., Leiva, V., & Santos-Neto, M. (2017). The transmuted Birnbaum-Saunders distribution. Revstat - Statistical Journal, 15, 601–628.
  28. Burr, I. W. (1942). Cumulative frequency functions. Annals of Mathematical Statistics, 13, 215–232, doi:10.1214/aoms/1177731607. DOI: https://doi.org/10.1214/aoms/1177731607
  29. Celik, N. (2018). Some Cubic Rank Transmuted Distributions. Journal of Applied Mathematics, Statistics and Informatics, 14, 27–43. DOI: https://doi.org/10.2478/jamsi-2018-0011
  30. Chakraborty, S., & Bhati, D. (2016). Transmuted geometric distribution with applications in modelling and regression analysis of count data. Statistics and Operations Research Transactions, 40, 153–176.
  31. Cordeiro, G. M., & de Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation, 81, 883–898, doi:10.1080/00949650903530745. DOI: https://doi.org/10.1080/00949650903530745
  32. Cordeiro, G. M., Saboor, A., Khan, M. N., Provost, S. B., & Ortega, E. M. M. (2017). The Transmuted Generalized Modified Weibull Distribution. Filomat, 31, 1395–1412, doi:10.2298/FIL1705395C. DOI: https://doi.org/10.2298/FIL1705395C
  33. Das, K. K. (2015). On Some Generalised Transmuted Distributions. International Journal of Scientific & Engineering Research, 6, 1686–1691.
  34. Elbatal, I. (2013a). Transmuted generalized inverted exponential distribution. Econ. Qual. Control, 28, 125–133, doi:10.1515/eqc-2013–0020. DOI: https://doi.org/10.1515/eqc-2013-0020
  35. Elbatal, I. (2013b). Transmuted modified inverse Weibull distribution: A generalization of the modified inverse Weibull probability distribution. International Journal of Mathematical Archive, 4, 117–119.
  36. Elbatal, I., & Aryal, G. (2013). On the transmuted additive Weibull distribution. Australian Journal of Statistics, 42, 117–132, doi:10.17713/ajs.v42i2.160. DOI: https://doi.org/10.17713/ajs.v42i2.160
  37. Elbatal, I., & Aryal, G. (2015). Transmuted Dagum distribution with applications. Chilean Journal of Statistics, 6, 31–45.
  38. Elbatal, I., & Elgarhy, M. (2013). Transmuted quasi-Lindley distribution: A generalization of the quasi-Lindley distribution. Int. J. Pure Appl. Sci. Technol., 18, 59–70.
  39. Elbatal, I., Asha, G., & Raja, A. V. (2014). Transmuted exponentiated Fréchet distribution: Properties and applications. Journal of Statistics Applications & Probability, 3, 379–394, doi:10.12785/jsap/030309.
  40. Elbatal, I., Diab, L. S., & Alim, N. A. A. (2013). Transmuted generalized linear exponential distribution. International Journal of Computer Applications, 83, 29–37. DOI: https://doi.org/10.5120/14671-2681
  41. Elgarhy, M., Rashed, M., & Shawki, A. W. (2016). Transmuted generalized Lindley distribution. International Journal of Mathematics Trends and Technology, 29, 145–154, doi:10.14445/22315373/IJMTT-V29P520. DOI: https://doi.org/10.14445/22315373/IJMTT-V29P520
  42. Eugene, N., Lee, C., & Famoye, F. (2002). Beta-normal distribution and its applications. Communications in Statistics-Theory and Methods, 31, 497–512. DOI: https://doi.org/10.1081/STA-120003130
  43. Fatima, A., & Roohi, A. (2015). Transmuted exponentiated Pareto-I distribution. Pak. J. Statist., 32, 63–80.
  44. Gharaibeh, M. M., & Al-Omari, A. I. (2019). Transmuted Ishita Distribution and Its Applications. Journal of Statistics Applications & Probability, 8, 67–81. DOI: https://doi.org/10.18576/jsap/080201
  45. Granzotto, D. C. T., & Louzada, F. (2015). The Transmuted Log-Logistic Distribution: Modeling, Inference, and an Application to a Polled Tabapua Race Time up to First Calving Data. Communications in Statistics - Theory and Methods, 44, 3387–3402, doi:10.1080/03610926.2013.775307. DOI: https://doi.org/10.1080/03610926.2013.775307
  46. Granzotto, D. C. T., Louzada, F., & Balakrishnan, N. (2017). Cubic rank transmuted distributions: inferential issues and applications. Journal of Statistical Computation and Simulation, 87, 2760–2778, doi.10.1080/00949655.2017.1344239. DOI: https://doi.org/10.1080/00949655.2017.1344239
  47. Gupta, R. C., Gupta, P., & Gupta, R. D. (1998). Modeling failure time data by Lehmann alternatives. Communications in Statistics-Theory and Methods, 27, 887–904, doi:10.1080/03610929808832134. DOI: https://doi.org/10.1080/03610929808832134
  48. Haq, M. A., Butt, N. S., Usman, R. M., & Fattah, A. A. (2016). Transmuted power function distribution. Gazi University Journal of Science, 29, 177–185.
  49. Hussian, M. A. (2014). Transmuted exponentiated gamma distribution: A generalization of exponentiated gamma probability distribution. Applied Mathematical S ciences, 8, 1297–1310, doi:10.12988/ams.2014.42105. DOI: https://doi.org/10.12988/ams.2014.42105
  50. Iriarte, Y. A., & Astorga, J. M. (2014). Transmuted Maxwell probability distribution. Revista Integración, 32, 211–221.
  51. Iriarte, Y. A., & Astorga, J. M. (2015). A version of transmuted generalized Rayleigh distribution. Revista Integración, 33, 83–95.
  52. Johnson, N. L., Kotz, S., & Balakrishnan, N. (1994). Continuous Univariate Distributions, Vol. 1. New York, USA: John Wiley & Sons.
  53. Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous Univariate Distributions, Vol. 2. New York, USA: John Wiley & Sons.
  54. Khan, M. S., & King, R. (2013). Transmuted modified Weibull distribution: A generalization of the modified Weibull probability distribution. European Journal of Pure and Applied Mathematics., 6, 66–88.
  55. Khan, M. S., & King, R. (2014a). A New Class of Transmuted Inverse Weibull Distribution for Reliability Analysis. American Journal of Mathematical and Management Sciences, 33, 261–286, doi:10.1080/01966324.2014.929989. DOI: https://doi.org/10.1080/01966324.2014.929989
  56. Khan, M. S., & King, R. (2014b). Transmuted generalized inverse Weibull distribution. Journal of Applied Statistical Science, 20, 213–230.
  57. Khan, M. S., & King, R. (2015). Transmuted Modified Inverse Rayleigh Distribution. Austrian Journal of Statistics, 44, 17–29, doi:10.17713/ajs.v44i3.21. DOI: https://doi.org/10.17713/ajs.v44i3.21
  58. Khan, M. S., King, R., & Hudson, I. L. (2014). Characterizations of the transmuted inverse Weibull distribution. ANZIAM J., 55, C197–C217. DOI: https://doi.org/10.21914/anziamj.v55i0.7785
  59. Khan, M. S., King, R., & Hudson, I. L. (2015). A new three parameter transmuted Chen lifetime distribution with application. Journal of Applied Statistical Sciences, 21, 239–259.
  60. Khan, M. S., King, R., & Hudson, I. L. (2016a). Transmuted Gompertz distribution: Properties and estimation. Pak. J. Statist., 32, 161–182.
  61. Khan, M. S., King, R., & Hudson, I. L. (2016b). Transmuted Kumaraswamy distribution. Statistics in Transition, 17, 1–28, doi:10.21307/stattrans-2016–013. DOI: https://doi.org/10.21307/stattrans-2016-013
  62. Khan, M. S., King, R., & Hudson, I. L. (2017a). Transmuted generalized exponential distribution: A generalization of the exponential distribution with applications to survival data. Communications in Statistics - Simulation and Computation, 46, 4377-4398 , doi:10.1080/03610918.2015.1118503. DOI: https://doi.org/10.1080/03610918.2015.1118503
  63. Khan, M. S., King, R., & Hudson, I. L. (2017b). Transmuted new generalized inverse Weibull distribution. Pak. j. stat. oper. res., 13, 277–296, doi:10.18187/pjsor.v13i2.1523. DOI: https://doi.org/10.18187/pjsor.v13i2.1523
  64. Khan, M. S., King, R., & Hudson, I. L. (2017c). Transmuted Weibull distribution: Properties and estimation. Communications in Statistics - Theory and Methods, 46, 5394–5418, doi:10.1080/03610926.2015.1100744. DOI: https://doi.org/10.1080/03610926.2015.1100744
  65. Khan, M. S., King, R., & Hudson, I. L. (2018). Transmuted Modified Weibull distribution: Properties and Application. European Journal of Pure and Applied Mathematics, 11, 362–374. DOI: https://doi.org/10.29020/nybg.ejpam.v11i2.3208
  66. Khan, M. S., King, R., & Hudson, I. L. (2019). Transmuted Burr Type X Distribution with Covariates Regression Modeling to Analyze Reliability Data. American Journal of Mathematical and Management Sciences, doi, 10.1080/01966324.2019.1605320. DOI: https://doi.org/10.1080/01966324.2019.1605320
  67. Kumaraswamy, P. (1980). A Generalized probability density-function for double-bounded random-processes. Journal of Hydrology, 462, 79–88. DOI: https://doi.org/10.1016/0022-1694(80)90036-0
  68. Lucena, S. E. F., Silva, A. H. A., & Cordeiro, G. M. (2015). The transmuted generalized gamma distribution: Properties and application. Journal of Data Science, 13, 409–420. DOI: https://doi.org/10.6339/JDS.201504_13(2).0010
  69. Luguterah, A., & Nasiru, S. (2015). Transmuted exponential Pareto distribution. Far East Journal of Theoretical Statistics, 50, 31–49. DOI: https://doi.org/10.17654/FJTSJan2015_031_049
  70. Mahmoud, M. R., & Mandouh, R. M. (2013). On the transmuted Fréchet distribution. Journal of Applied Sciences Research, 9, 5553–5561.
  71. Mansour, M. M., & Mohamed, S. M. (2015). A new generalized of transmuted Lindley distribution. Applied Mathematical Sciences, 9, 2729–2748, doi:10.12988/ams.2015.52158. DOI: https://doi.org/10.12988/ams.2015.52158
  72. Mansour, M. M., Elrazik, E. M. B., Hamed, M. S., & Mohamed, S. M. (2015). A new transmuted additive Weibull distribution: Based on a new method for adding a parameter to a family of distribution. International Journal of Applied Mathematical Sciences, 8, 31–54.
  73. Marshall, A. W., & Olkin, I. (1997). A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika, 84, 641–652, doi:10.1093/biomet/84.3.641. DOI: https://doi.org/10.1093/biomet/84.3.641
  74. Merovci, F. (2013a). Transmuted exponentiated exponential distribution. Mathematical Sciences And Applications E-Notes, 1, 112–122.
  75. Merovci, F. (2013b). Transmuted Lindley distribution. Int. J. Open Problems Comput. Math., 6, 63–72. DOI: https://doi.org/10.12816/0006170
  76. Merovci, F. (2013c). Transmuted Rayleigh Distribution. Austrian Journal of Statistics, 42, 21–31, doi:10.17713/ajs.v42i1.163. DOI: https://doi.org/10.17713/ajs.v42i1.163
  77. Merovci, F. (2014). Transmuted Generalized Rayleigh Distribution. Journal of Statistics Applications & Probability, 3, 9–20, doi:10.18576/jsap/030102. DOI: https://doi.org/10.18576/jsap/030102
  78. Merovci, F., & Puka, L. (2014). Transmuted Pareto Distribution. ProbStat Forum, 7, 1–11.
  79. Merovci, F., Alizadeh, M., & Hamedani, G. G. (2016). Another Generalized Transmuted Family of Distributions: Properties and Applications. Austrian Journal of Statistics, 45, 71–93, doi:10.17713/ajs.v45i3.109. DOI: https://doi.org/10.17713/ajs.v45i3.109
  80. Merovci, F., Elbatal, I., & Ahmed, A. (2014). Transmuted generalized inverse Weibull distribution. Australian Journal of Statistics, 43, 119–131. DOI: https://doi.org/10.17713/ajs.v43i2.28
  81. Nofal, Z. M., Afify, A. Z., Yousof, H. M., Granzotto, D. C. T., & Louzada, F. (2018). The Transmuted Exponentiated Additive Weibull Distribution: Properties and Applications. Journal of Modern Applied Statistical Methods, 17(1), eP2526. doi, 10.22237/jmasm/1525133340. DOI: https://doi.org/10.22237/jmasm/1525133340
  82. Okorie, I. E., & Akpanta, A. C. (2019). A Note on the Transmuted Generalized Inverted Exponential Distribution with Application to Reliability Data. Thailand Statistician, 17, 118–124.
  83. Otiniano, C. E. G., de Paiva, B. S., Daniele, S. B., & Neto, M. (2019). The transmuted generalized extreme value distribution: properties and application. Communications for Statistical Applications and Methods, 26, 239–259. DOI: https://doi.org/10.29220/CSAM.2019.26.3.239
  84. Owoloko, E. A., Oguntunde, P. E., & Adejumo, A. O. (2015). Performance rating of the transmuted exponential distribution: An analytical approach. Springer Plus, 4, 8–18, doi:10.1186/s40064-015-1590–1596. DOI: https://doi.org/10.1186/s40064-015-1590-6
  85. Pearson, K. (1895). Contributions to the mathematical theory of evolution, II: Skew variation in homogeneous material. Philosophical Transactions of the Royal Society, 186, 343–414, doi:10.1098/rsta.1895.0010. DOI: https://doi.org/10.1098/rsta.1895.0010
  86. Pearson, K. (1901). Mathematical contributions to the theory of evolution, X: Supplement to a memoir on skew variation. Philosophical Transactions of the Royal Society, 197, 443–459, doi:10.1098/rsta.1901.0023. DOI: https://doi.org/10.1098/rsta.1901.0023
  87. Pearson, K. (1916). Mathematical contributions to the theory of evolution, XIX: Second supplement to a memoir on skew variation. Philosophical Transactions of the Royal Society, 216, 429–457, doi:10.1098/rsta.1916.0009. DOI: https://doi.org/10.1098/rsta.1916.0009
  88. Pobočíková, I., Sedliačková, Z., & Michalková, M. (2018). Transmuted Weibull distribution and its applications. MATEC Web of Conferences, 157, 1–11, doi:10.1051/matecconf/201815708007. DOI: https://doi.org/10.1051/matecconf/201815708007
  89. Rahman, M. M., Al-Zahrani, B., & Shahbaz, M. Q. (2018a). A General Transmuted Family of Distributions. Pak. j. stat. oper. res., 14, 451–469, doi:10.18187/pjsor.v14i2.2334. DOI: https://doi.org/10.18187/pjsor.v14i2.2334
  90. Rahman, M. M., Al-Zahrani, B., & Shahbaz, M. Q. (2018b). Cubic Transmuted Pareto Distribution. Annals of Data Science, doi, 10.1007/s40745-018-0178–8. DOI: https://doi.org/10.1007/s40745-018-0178-8
  91. Rahman, M. M., Al-Zahrani, B., & Shahbaz, M. Q. (2018c). New General Transmuted Family of Distributions with Applications. Pak J Stat Oper Res, 14, 807–829, doi:10.18187/pjsor.v14i4.2655. DOI: https://doi.org/10.18187/pjsor.v14i4.2655
  92. Rahman, M. M., Al-Zahrani, B., & Shahbaz, M. Q. (2019). Cubic Transmuted Weibull Distribution: Properties and Applications. Annals of Data Science, doi, 10.1007/s40745-018-00188-y. DOI: https://doi.org/10.1007/s40745-018-00188-y
  93. Rahman, M. M., Al-Zahrani, B., Shahbaz, S. H., & Shahbaz, M. Q. (2019). Cubic Transmuted Uniform Distribution: An Alternative to Beta and Kumaraswamy Distributions. European Journal of Pure and Applied Mathematics, 12, 1106–1121. DOI: https://doi.org/10.29020/nybg.ejpam.v12i3.3410
  94. Roy, M. K. (2012). Fundamentals of Probability & Probability Distributions. Chittagong: Romax Publications.
  95. Samuel, A. F. (2019). On the Performance of Transmuted Logistic Distribution: Statistical Properties and Application. Budapest International Research in Exact Sciences (BirEx) Journal, 1, 26–34. DOI: https://doi.org/10.33258/birex.v1i3.341
  96. Shahzad, M. N., & Asghar, Z. (2016). Transmuted Dagum distribution: A more flexible and broad shaped hazard function model. Hacettepe Journal of Mathematics and Statistics, 45, 227,244. DOI: https://doi.org/10.15672/HJMS.2015529452
  97. Shaw, W. T., & Buckley, I. R. C. (2007). The alchemy of probability distributions: beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map.
  98. Tadikamalla, & Pandu, R. (1980). A Look at the Burr and Related Distributions. International Statistical Review, 48, 337–344. DOI: https://doi.org/10.2307/1402945
  99. Tahir, M. H., & Cordeiro, G. M. (2016). Compounding of distributions: a survey and new generalized classes. Journal of Statistical Distributions and Applications, 3, 1–35, doi:10.1186/s40488-016-0052–1. DOI: https://doi.org/10.1186/s40488-016-0052-1
  100. Tian, Y., Tian, M., & Zhu, Q. (2014). Transmuted linear exponential distribution: A new generalization of the linear exponential distribution. Communications in Statistics - Simulation and Computation, 43, 2661–2671, doi:10.1080/03610918.2013.763978. DOI: https://doi.org/10.1080/03610918.2013.763978
  101. Vardhan, R. V., & Balaswamy, S. (2016). Transmuted new modified Weibull distribution. Mathematical Sciences and Applications E-Notes, 4, 125–135. DOI: https://doi.org/10.36753/mathenot.421421