Main Article Content
Abstract
The autocorrelation function (ACF) measures the correlation between observations at different distances apart. We derive explicit equations for generalized heteroskedasticity ACF for moving average of order q, MA(q). We consider two cases: Firstly: when the disturbance term follow the general covariance matrix structure Cov(wi, wj)=S with si,j ¹ 0 " i¹j . Secondly: when the diagonal elements of S are not all identical but sij = 0 " i¹j, i.e. S=diag(s11, s22,…,stt). The forms of the explicit equations depend essentially on the moving average coefficients and covariance structure of the disturbance terms.
Keywords
Article Details
Authors who publish with this journal agree to the following License
CC BY: This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.