Main Article Content
Abstract
In this paper, we study conditions sufficient for strong consistency of a class of estimators of parameters of nonlinear regression models. The study considers continuous functions depending on a vector of parameters and a set of random regressors. The estimators chosen are minimizers of a generalized form of the signed-rank norm. The generalization allows us to make consistency statements about minimizers of a wide variety of norms including the L1 and L2 norms. By implementing trimming, it is shown that high breakdown estimates can be obtained based on the proposed dispersion function.
Keywords
Article Details
Authors who publish with this journal agree to the following License
CC BY: This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.