Main Article Content
Abstract
Order statistics occupy an important place in statistical theory. They have an important place in many fields of applied statistics such as goodness of fit tests and parameter estimation. In addition, it is necessary to find the expected values of these order statistics in these application areas. However for some probability distributions, these expected values are very difficult to find such as the standard normal distribution. So the problem of finding the expected values of the order statistics in statistical theory is of importance. In this study, two novel approximation methods are proposed for the expected values of the order statistics of the standard normal distribution. Also, the true values with previously given approximations, simulation results and our proposed approximations are compared by using mean square error (MSE), mean absolute error (MAE) and maximum error (ME) criteria. Furthermore, to evaluate the performances of all approximation methods, we compute the differences between exact values and approximation values. Then, the plot of these differences against the exact values is given. Based on both the plots and the comparison results, novel approximations fit the true values better than the other approximations presented in this paper.
Keywords
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following License
CC BY: This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.