Main Article Content


In this paper, a new lifetime distribution is proposed. Various statistical properties of the proposed distribution such as survival function, hazard rate function, mean residual life function, moments, moment generating function, Bonferroni curve, Lorenz curve, and order statistic are presented. The Bayesian estimator of the distribution parameter is derived. The behavior of the Bayesian estimator is assessed by a simulation study. Furthermore, a regression model is developed based on the proposed distribution. Some real data applications are analyzed to show the potentiality of the proposed


Weighted Distribution Bilal Distribution Bayesian Approach Regression Model

Article Details

How to Cite
Atikankul, Y. (2023). Bayesian Inference for a Weighted Bilal Distribution: Regression Model. Pakistan Journal of Statistics and Operation Research, 19(1), 1-13.


    1. Abd-Elrahman, A. M. (2013). Utilizing ordered statistics in lifetime distributions production: a new lifetime distribution and applications. Journal of Probability and Statistical Science, 11(2):153–164.
    2. Abd-Elrahman, A. M. (2017). A new two-parameter lifetime distribution with decreasing, increasing or upsidedown bathtub-shaped failure rate. Communications in Statistics-Theory and Methods, 46(18):8865–8880.
    3. Baltagi, B. H. (2011). Econometrics. Springer, doi: 10.1007/978-3-642-20059-5.
    4. Gelman, A. and Hill, J. (2006). Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, doi:10.1017/CBO9780511790942.
    5. Glaser, R. E. (1980). Bathtub and related failure rate characterizations. Journal of the American Statistical Association, 75(371):667–672, doi:10.1080/01621459.1980.10477530.
    6. Hall, B., Hall, M., Statisticat, L., Brown, E., Hermanson, R., Charpentier, E., Heck, D., Laurent, S., Gronau, Q. F., and Singmann, H. (2021). Package ‘LaplacesDemon’.
    7. Lindley, D. V. (1958). Fiducial distributions and Bayes’ theorem. Journal of the Royal Statistical Society. Series B (Methodological), 20(1):102–107, doi:10.1111/j.2517–6161.1958.tb00278.x.
    8. Nichols, M. D. and Padgett, W. (2006). A bootstrap control chart for weibull percentiles. Quality and Reliability Engineering International, 22(2):141–151, doi:10.1002/qre.691.
    9. Patil, G. P. and Ord, J. (1976). On size-biased sampling and related form-invariant weighted distributions. Sankhya: The Indian Journal of Statistics, Series B, 38(1):48–61.
    10. R Core Team (2022). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
    11. Riad, F. H., Alruwaili, B., Gemeay, A. M., and Hussam, E. (2022). Statistical modeling for covid-19 virus spread in kingdom of saudi arabia and netherlands. Alexandria Engineering Journal, 61(12):9849–9866.
    12. Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(4):583–639, doi:10.1111/1467–9868.00353.