Main Article Content

Abstract

Estimation of unknown parameters using different loss functions encompasses a major area in the decision theory. Specifically, distance loss functions are preferable as it measures the discrepancies between two probability density functions from the same family indexed by different parameters. In this article, Hellinger distance loss function is considered for scale parameter λ of two-parameter Rayleigh distribution. After simplifications, form of loss is obtained and that is meaningful if parameter is not large and Bayes estimate of λ is calculated under that loss function. So, the Bayes estimate may be termed as ‘Pseudo Bayes estimate’ with respect to the actual Hellinger distance loss function as it is obtained using approximations to actual loss. To compare the performance of the estimator under these loss functions, we also consider weighted squared error loss function (WSELF) which is usually used for the estimation of the scale parameter. An extensive simulation   is carried out to study the behaviour of the Bayes estimators under the three different loss functions, i.e. simplified, actual and WSE loss functions. From the numericalresults it is found that the estimators perform well under the Hellinger distance loss function in comparison with the traditionally used WSELF. Also, we demonstrate the methodology by analyzing two real-life datasets.

Keywords

Two-parameter Rayleigh Distribution Hellinger Divergence Measure Risk Function

Article Details

Author Biographies

Babulal Seal, Deparment of Mathematics and Statistics, Aliah University, Newtown, Kolkata, India

Prof. Babulal Seal

Professor in Statistics

Department of Mathematics and Statistics

Aliah University, Newtown, Kolkata, India.

Proloy Banerjee, Deparment of Mathematics and Statistics, Aliah University, Newtown, Kolkata, India

Proloy Banerjee

Research Scholar,

Deparment of Mathematics and Statistics,

Aliah University, Newtown, Kolkata, India, 700160.

 

Shreya Bhunia, Deparment of Mathematics and Statistics, Aliah University, Newtown, Kolkata, India

Shreya Bhunia

Research Scholar

Deparment of Mathematics and Statistics,

Aliah University, Newtown, Kolkata, India, 700160.

Sanjoy Kumar Ghosh, Department of Statistics, Vidyasagar Metropolitan College, Kolkata, India

Sanjoy Kumar Ghosh

Assistant Professor of Statistics,

Vidyasagar Metropolitan College, Kolkata, India.

How to Cite
Seal, B., Banerjee, P., Bhunia, S., & Ghosh, S. K. (2023). Bayesian Estimation in Rayleigh Distribution under a Distance Type Loss Function. Pakistan Journal of Statistics and Operation Research, 19(2), 219-232. https://doi.org/10.18187/pjsor.v19i2.4130

References

  1. Ahmed, A., Ahmad, S., and Reshi, J. (2013). Bayesian analysis of rayleigh distribution. International Journal
  2. of Scientific and Research Publications, 3(10):1–9.
  3. Ahmed, M. A. (2020). On the alpha power kumaraswamy distribution: Properties, simulation and application.
  4. Revista Colombiana de Estad´ıstica, 43(2):285–313, doi: https://doi.org/10.15446/rce.v43n2.83598.
  5. Ahmed, Z., Nofal, Z. M., Abd El Hadi, N. E., et al. (2015). Exponentiated transmuted generalized raleigh
  6. distribution: A new four parameter rayleigh distribution. Pakistan journal of statistics and operation research,
  7. pages 115–134, doi:https://doi.org/10.18187/pjsor.v11i1.873.
  8. Akhter, A. S. and Hirai, A. S. (2009). Estimation of the scale parameter from the rayleigh distribution from
  9. type ii singly and doubly censored data. Pakistan Journal of Statistics and Operation Research, 5(1):31–45,
  10. doi:https://doi.org/10.18187/pjsor.v5i1.
  11. Bader, M. and Priest, A. (1982). Statistical aspects of fibre and bundle strength in hybrid composites. Progress
  12. in science and engineering of composites, pages 1129–1136.
  13. Banerjee, P. and Bhunia, S. (2022). Exponential transformed inverse rayleigh distribution: Statistical properties
  14. and different methods of estimation. Austrian Journal of Statistics, 51(4):60–75, doi:10.17713/ajs.v51i4.1338.
  15. Banerjee, P. and Seal, B. (2021). Partial bayes estimation of two parameter gamma distribution under noninformative prior. Statistics, Optimization & Information Computing, pages doi:10.19139/soic–2310–5070–1110.
  16. Bi, Q. and Gui, W. (2017). Bayesian and classical estimation of stress-strength reliability for inverse weibull
  17. lifetime models. Algorithms, 10(2):71.
  18. Birge, L. (1985). Non-asymptotic minimax risk for hellinger balls. ´ Probab. Math. Statist, 5(1):21–29.
  19. Chen, G. and Balakrishnan, N. (1995). A general purpose approximate goodness-of-fit test. Journal of
  20. Quality Technology, 27(2):154–161.
  21. Dey, S. (2009). Comparison of bayes estimators of the parameter and reliability function for rayleigh distribution under different loss functions. Malaysian Journal of Mathematical Sciences, 3(2):247–264.
  22. Dey, S. and Das, M. (2007). A note on prediction interval for a rayleigh distribution: Bayesian approach. American Journal of Mathematical and Management Sciences, 27(1-2):43–48, doi:https://doi.org/10.1080/01966324.2007.10737687.
  23. Dey, S., Dey, T., and Kundu, D. (2014). Two-parameter rayleigh distribution: Different methods of estimation. American Journal of Mathematical and Management Sciences, 33(1):55–74, doi:https://doi.org/10.1080/01966324.2013.878676.
  24. Dey, T., Dey, S., and Kundu, D. (2016). On progressively type-ii censored two-parameter rayleigh distribution. Communications in Statistics - Simulation and Computation, 45(2):438–455, doi:https://doi.org/10.1080/03610918.2013.856921.
  25. Ferguson, T. S. (1967). Mathematical Statistics - A Decision Theoretic Approach, 1st Edition. Academic Press.
  26. Fundi, M. D., Njenga, E. G., and Keitany, K. G. (2017). Estimation of parameters of the twoparameter rayleigh distribution based on progressive type-ii censoring using maximum likelihood method
  27. via the nr and the em algorithms. American Journal of Theoretical and Applied Statistics, 6(1):1–9, doi:
  28. 11648/j.ajtas.20170601.11.
  29. Howlader, H. and Hossain, A. (1995). On bayesian estimation and prediction from rayleigh based on type ii censored data. Communications in Statistics - Theory and Methods, 24(9):2251–2259, doi:10.1080/03610929508831614.
  30. Jahanshahi, S. M. A., Rad, A. H., and Fakoor, V. (2016). Goodness-of-fit test for rayleigh distribution based
  31. on hellinger distance. Annal Data Science, 3:401–411, doi:https://doi.org/10.1007/s40745–016–0088–6.
  32. Johnson, N. L., Kotz, S., and Balakrishnan, N. (1994). Continuous Univariate Distribution, Vol. 1. John
  33. Wiley & Sons, New York, USA.
  34. Kaminska, A. and Porosi ´ nski, Z. (2009). On robust bayesian estimation under some asymmetric and bounded ´
  35. loss function. Statistics, 43(3):253–265, doi:https://doi.org/10.1080/02331880802264318.
  36. Khan, H. M. R., Provost, S. B., and Singh, A. (2010). Predictive inference from a two-parameter rayleigh
  37. life model given a doubly censored sample. Communications in Statistics - Theory and Methods, 39(7):1237–
  38. , doi:https://doi.org/10.1080/03610920902871453.
  39. Kundu, D. and Gupta, R. D. (2006). Estimation of p [y¡ x] for weibull distributions. IEEE Trans. Reliab.,
  40. (2):270–280, doi: 10.1109/TR.2006.874918.
  41. Le Cam, L. (2012). Asymptotic methods in statistical decision theory. Springer, Springer Science & Business
  42. Media.
  43. Mkolesia, A., Kikawa, C. R., and Shatalov, M. Y. (2016). Estimation of the rayleigh distribution parameter.
  44. Transylvanian Review, 24(8):Special Issue.
  45. R Core Team (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical
  46. Computing, Vienna, Austria.
  47. Rayleigh, L. (1880). Xii. on the resultant of a large number of vibrations of the same pitch and of arbitrary
  48. phase. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 10(60):73–78,
  49. doi:https://doi.org/10.1080/14786448008626893.
  50. Seo, J. I., Jeon, J. W., and Kang, S. B. (2016). Exact interval inference for the two-parameter rayleigh
  51. distribution based on the upper record values. Journal of Probability and Statistics, pages 1–5.
  52. Shemyakin, A. (2014). Hellinger distance and non-informative priors. Bayesian Analysis, 9(4):923–938, doi:
  53. 1214/14–BA881.
  54. Tahmasebi, S., Hosseini, E. H., and Jafari, A. A. (2017). Bayesian estimation for rayleigh distribution based
  55. on ranked set sampling. New Trends in Mathematical Sciences, 5(4):97–106.
  56. Zamanzade, E. and Mahdizadeh, M. (2017). Goodness of fit tests for rayleigh distribution based on phi-divergence. Revista Colombiana de EstadIstica ´ , 40(2):279–290, doi: https://doi.org/10.15446/rce.v40n2.60375.