Main Article Content
Abstract
The current paper presented new two-parameter life processes distribution, the Marshall-Olkin Pranav (MOEP) distribution. This study combines the Marshall-Olkin method with the Pranav distribution to produce a more accessible and flexible model used to perform data survival techniques. Some of its critical statistical features are presented in this study. For instance, we mentioned its survival , hazard, reversed hazard, and cumulative hazard rate function. Then we discussed its Moment generating functions, The characteristic function, Incomplete moments, R`enyi and Entropies, and stochastic orderings. The research utilized maximization of chance in estimating parameters. These tests are done through simulations to achieve the desired results. After its attainment, real-life data was used to test the new model, which possesses the best goodness of fit.
Keywords
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following License
CC BY: This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
References
- Ahmad, Z. (2020). The zubair-G family of distributions: properties and applications. Annals of Data Science, 7(2):195–208. https://doi.org/10.1007/s40745-018-0169-9
- Asgharzadeh, A., Bakouch, H. S., Nadarajah, S., & Sharafi, F. (2016). A new weighted lindley distribution with application. Brazilian Journal of Probabil- ity and Statistics, 30(1):1–27. DOI: 10.1214/14-BJPS253
- Bjerkedal, T. et al. (1960). Acquisition of resistance in guinea pies infected with different doses of virulent tubercle bacilli. American Journal of Hygiene, 72(1):130–48. DOI: 10.1093/oxfordjournals.aje.a120129
- Cordeiro, G.M.,& Lemonte, A.J.,( 2013). On the Marshall-Olkin extended Weibull distribution. Statistical papers. 54, 333-353. DOIhttps://doi.org/10.1007/s00362-012-0431-8
- Chipepa, F., Moakofi, T., & Oluyede, B. (2022). The Marshall-Olkin-Odd Power Generalized Weibull-G Family of Distributions with Applications of COVID-19 Data. Journal of Probability and Statistical Science, 20(1), 1-20. DOI: https://doi.org/10.37119/jpss2022.v20i1.509
- Eugene, N., Lee, C., & Famoye, F. (2002). Beta-normal distribution and its applications. Communications in Statistics-Theory and methods, 31(4):497– 512. https://doi.org/10.1081/STA-120003130
- Fuller Jr, E. R., Freiman, S. W., Quinn, J. B., Quinn, G. D., & Carter, W. C. (1994). Fracture mechanics approach to the design of glass aircraft windows: A case study. In Window and dome technologies and materials IV, volume 2286, pages 419–430. International Society for Optics and Photonics. https://doi.org/10.1117/12.187363
- Granzotto, D., Louzada, F., & Balakrishnan, N. (2017). Cubic rank trans- muted distributions: inferential issues and applications. Journal of statistical Computation and Simulation, 87(14):2760–2778. https://doi.org/10.1080/00949655.2017.1344239
- Javed, M., Nawaz, T., & Irfan, M. (2019). The Marshall-Olkin kappa distribution: properties and applications. Journal of King Saud University-Science, 31(4), 684-691. https://doi.org/10.1016/j.jksus.2018.01.001
- KK, S. (2018). Pranav distribution with properties and its applications. Biom Biostat Int J, 7(3):244–254. DOI: 10.15406/bbij.2018.07.00215
- Kumaraswamy, P. (1980). A generalized probability density function for double- bounded random processes. Journal of hydrology, 46(1-2):79–88. https://doi.org/10.1016/0022-1694(80)90036-0
- Mahdavi, A. & Kundu, D. (2017). A new method for generating distributions with an application to exponential distribution. Communications in Statistics-Theory and Methods, 46(13):6543–6557. https://doi.org/10.1080/03610926.2015.1130839
- Marshall, A. W. & Olkin, I. (1997). A new method for adding a parameter to a family of distributions with application to the exponential and weibull families. Biometrika, 84(3):641–652. https://doi.org/10.1093/biomet/84.3.641
- Moakofi, T., Oluyede, B., & Makubate, B. (2021). Marshall-Olkin Lindley-Log-logistic distribution: Model, properties and applications. Mathematica Slovaca, 71(5), 1269-1290. https://doi.org/10.1515/ms-2021-0052
- Mudholkar, G. S. & Srivastava, D. K. (1993). Exponentiated weibull family for analyzing bathtub failure-rate data. IEEE transactions on reliability, 42(2):299–302. DOI: 10.1109/24.229504
- Rahman, M. M., Al-Zahrani, B., & Shahbaz, M. Q. (2018). A general trans- muted family of distributions. Pakistan Journal of Statistics and Operation Research, pages 451–469. https://doi.org/10.18187/pjsor.v14i2.2334
- Shaked, M. & Shanthikumar, J. G. (2007). Stochastic orders. New York, Ny: Springer New York. https://doi.org/10.1007/978-0-387-34675-5_1
- Shanker, R. and Mishra, A. (2013). A quasi Lindley distribution. African Journal of Mathematics and Computer Science Research, 6(4), 64-71. DOI 10.5897/AJMCSR 12.067
- Shaw, W. T. & Buckley, I. R. (2009). The alchemy of probability distributions: beyond gram-charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map. arXiv preprint arXiv:0901.0434. https://doi.org/10.48550/arXiv.0901.0434