Main Article Content

Abstract

A new family of distributions called Gamma Odd Burr X-G (GOBX-G) distribution is introduced in this paper. Its structural properties such as the density expansion, quantile function, moments and generating functions, incomplete moments, probability weighted moments, R´enyi entropy and order statistics were derived. Maximum likelihood technique is used to estimate the parameter of this model and simulation results are provided. The flexibility and applicability of this model is demonstrated using real life datasets.

Keywords

Family of distributions Gamma-distribution Odd Burr X-G distribution Weibull distribution Maximum likelihood estimation

Article Details

Author Biographies

Bakang Percy Tlhaloganyang, University of Botswana, Botswana

Department of Statistics (Masters student)

Whatmore, Department of Mathematics & Statistical Sciences, Botswana International University of Science and Technology, Botswana

Department of Mathematics & Statistical Sciences, Botswana International University of Science and Technology, Botswana.

Broderick Oluyede, Department of Mathematics & Statistical Sciences, Botswana International University of Science and Technology, Botswana

Statistics Professor, Department of Mathematics & Statistical Sciences, Botswana International University of Science and Technology, Botswana. 

How to Cite
Tlhaloganyang, B. P., Sengweni, W., & Oluyede, B. (2022). The The Gamma Odd Burr X-G Family of Distributions with Applications. Pakistan Journal of Statistics and Operation Research, 18(3), 721-746. https://doi.org/10.18187/pjsor.v18i3.4045

References

  1. Abramowitz, M. and Stegun, I. (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Table.
  2. Ahmed, M. T., Khaleel, M. A., Oguntunde, P. E., and Abdal-Hammed, M. K. (2021). A New Version of the Exponentiated Burr X Distribution. In Journal of Physics: Conference Series, volume 1818. IOP Publishing. DOI: https://doi.org/10.1088/1742-6596/1818/1/012116
  3. Arshad, R. M. I., Tahir, M. H., Chesneau, C., Jamal, F., Mansoor, M., Zubair, M., and Nasir, M. (2020). The Gamma Kumaraswamy-G Family of Distributions: Theory, Inference and Applications. Statistics in Transition New Series, 21(5):17-40. DOI: https://doi.org/10.21307/stattrans-2020-053
  4. Barreto-Souza, W., Lemonte, A. J., and Cordeiro, G. M. (2013). General Results for the Marshall and Olkin's Family of Distributions. Anais da Academia Brasileira de Ciˆencias, 85:3-21. DOI: https://doi.org/10.1590/S0001-37652013000100002
  5. Burr, I. W. (1942). Cumulative Frequency Functions. The Annals of Mathematical Statistics, 13(2):215-232. DOI: https://doi.org/10.1214/aoms/1177731607
  6. Chamunorwa, S., Makubate, B., Oluyede, B., and Chipepa, F. (2021). The Exponentiated Half Logistic-Log-Logistic Weibull distribution: Model, Properties and Applications. Journal of Statistical Modelling: Theory and Applications, pages 1-20.
  7. Cordeiro, G. M., Afify, A. Z., Yousof, H. M., Pescim, R. R., and Aryal, G. R. (2017). The Exponentiated Weibull-H Family of Distributions: Theory and Applications. Mediterranean Journal of Mathematics, 14(4):1-22. DOI: https://doi.org/10.1007/s00009-017-0955-1
  8. Grandshteyn, I. and Ryzhik, I. (1980). Table of Integrals, Series, and Products. New York: Academic Press, 8:362.
  9. Ibrahim, N. A., Khaleel, M. A., Merovci, F., Kilicman, A., and Shitan, M. (2017). Weibull Burr X Distribution Properties and Application. Pakistan Journal of Statistics, 33(5).
  10. Jamal, F., Reyad, H., Nasir, M., Chesneau, C., Shah, M., and Ahmed, S. (2019). Topp-LeoneWeibull-Lomax Distribution: Properties, Regression model and Applications. Hal Open Science, hal-02270561. DOI: https://doi.org/10.35453/NEDJR-ASCN-2019-0095
  11. Khaleel, M. A., Ibrahim, N. A., Shitan, M., and Merovci, F. (2016). Some Properties of Gamma Burr Type X Distribution with Application. In AIP Conference proceedings, volume 1739, pages 1-8. AIP Publishing LLC. DOI: https://doi.org/10.1063/1.4952567
  12. Khaleel, M. A., Ibrahim, N. A., Shitan, M., and Merovci, F. (2018). New Extension of Burr Type X Distribution Properties with Application. Journal of King Saud University-Science, 30(4):450-457. DOI: https://doi.org/10.1016/j.jksus.2017.05.007
  13. Lahcene, B. (2021). A New Extended-Gamma Family of Distributions: Properties and Applications. Journal of Applied Mathematics and Computation, 5(1):9-17. DOI: https://doi.org/10.26855/jamc.2021.03.002
  14. Merovci, F., Khaleel, M. A., Ibrahim, N. A., and Shitan, M. (2016). The Beta Burr Type X Distribution Properties with Application. SpringerPlus, 5(1):1-18. DOI: https://doi.org/10.1186/s40064-016-2271-9
  15. Nassar, M. and Nada, N. (2011). The Beta Generalized Pareto Distribution. Journal of Statistics: Advances in Theory and Applications, 6(1/2):1-17.
  16. Oluyede, B. O., Mashabe, B., Fagbamigbe, A., Makubate, B., and Wanduku, D. (2020). The Exponentiated Generalized Power Series Family of Distributions: Theory, Properties and Applications. Heliyon, 6(8):e04653. DOI: https://doi.org/10.1016/j.heliyon.2020.e04653
  17. Peter, P., Oluyede, B., Bindele, H., Ndwapi, N., and Mabikwa, O. (2021a). The Gamma Odd Burr III-G Family of Distributions: Model, Properties and Applications. Revista Colombiana de Estad´ıstica, 44(2):331-368.
  18. Peter, P. O., Oluyede, B., Ndwapi, N., and Bindele, H. (2021b). The Weibull Odd Burr III-G Family of Distributions with Properties and Applications. Journal of Statistical Modelling: Theory and Applications, pages 1-30.
  19. Pog´any, T. k. and Saxena, R. k. (2010). The Gamma-Weibull Distribution Revisited. Anais da Academia Brasileira de Ciˆencias, 82(2):513-520. DOI: https://doi.org/10.1590/S0001-37652010000200026
  20. Risti´c, M. M. and Balakrishnan, N. (2012). The Gamma Exponentiated Exponential Distribution. Journal of Statistical Computation and Simulation, 82(8):1191-1206. DOI: https://doi.org/10.1080/00949655.2011.574633
  21. Sengweni, W., Oluyede, B., and Makubate, B. (2021). The Exponentiated Half-logistic Odd Lindley-G Family of Distributions with Applications. Journal of Nonlinear Sciences & Applications (JNSA), 14(5). DOI: https://doi.org/10.22436/jnsa.014.05.01
  22. Shrahili, M., Elbatal, M., and Muhammad, M. (2019). The Type I Half-Logistic Burr X Distribution: Theory and Practice. J. Nonlinear Sci. Appl, 12:262-277. DOI: https://doi.org/10.22436/jnsa.012.05.01
  23. Sultan, K. and Al-Moisheer, A. (2015). Mixture of Inverse Weibull and Lognormal Distributions: Properties, Estimation, and Illustration. Mathematical Problems in Engineering, 2015. DOI: https://doi.org/10.1155/2015/526786
  24. Surles, J. and Padgett, W. (2001). Inference for Reliability and Stress-strength for a Scaled Burr Type X Distribution. Lifetime Data Analysis, 7(2):187-200. DOI: https://doi.org/10.1023/A:1011352923990
  25. Usman, R. M. and Ilyas, M. (2020). The Power Burr Type X Distribution: Properties, Regression Modeling and Applications. Punjab University Journal of Mathematics, 52(8):27-44.
  26. Yousof, H. M., Afify, A. Z., Hamedani, G., and Aryal, G. R. (2017). The Burr X Generator of Distributions for Lifetime Data. Journal of Statistical Theory and Applications, 16(3):288-305. DOI: https://doi.org/10.2991/jsta.2017.16.3.2