Main Article Content

Abstract

In this paper, we proposed a new generalized family of distribution namely new alpha power Exponential (NAPE) distribution based on the new alpha power transformation (NAPT) method by Elbatal et al. (2019). Various statistical properties of the proposed distribution are obtained including moment, incomplete moment, conditional moment, probability weighted moments (PWMs), quantile function, residual and reversed residual lifetime function, stress-strength parameter, entropy and order statistics. The percentage point of NAPE distribution for some specific values of the parameters is also obtained. The method of maximum likelihood estimation (MLE) has been used for estimating the parameters of NAPE distribution. A simulation study has been performed to evaluate and execute the behavior of the estimated parameters for mean square errors (MSEs) and bias.  Finally, the efficiency and flexibility of the new proposed model are illustrated by analyzing three real-life data sets.

Keywords

Alpha Power Exponential distribution Statistical Properties Parameter Estimation Simulation

Article Details

How to Cite
Chettri, S., Das, B., Imliyangba, I., & Hazarika, P. J. (2022). A Generalized Form of Power Transformation on Exponential Family of Distribution with Properties and Application. Pakistan Journal of Statistics and Operation Research, 18(3), 511-535. https://doi.org/10.18187/pjsor.v18i3.3883

References

  1. Abouammoh, A.M., Alshangiti, A.M. (2009). Reliability estimation of generalized inverted exponential distribution. Journal of Statistical Computation and Simulation, 79(11), 1301-1315. DOI: https://doi.org/10.1080/00949650802261095
  2. Almetwally, E.M., Abdo D.A., Hafez, E.H., Jawa, T.M., Sayed-Ahmed, N., Almongy, H.M. (2022). The new discrete distribution with application to COVID-19 Data. Results in Physics, 32. https://doi.org/10.1016/j.rinp.2021.104987 DOI: https://doi.org/10.1016/j.rinp.2021.104987
  3. Alzaatreh, A., Lee, C., Famoye, F. (2013). A new method for generating families of continuous distributions. Metron, 71, 63-79. DOI: https://doi.org/10.1007/s40300-013-0007-y
  4. Azzalini. (1985). A class of distributions which includes the normal ones. Scandinavian Journal of Statistics, 12, 171-178.
  5. Butler, R. J., McDonald, J. B. (1989). Using incomplete moments to measure inequality. Journal of Econometrics, 42(1), 109-119. DOI: https://doi.org/10.1016/0304-4076(89)90079-1
  6. Elbatal, I., Ahmad, Z., Elgarhy, M., Almarashi, A.M. (2019). A new alpha power transformed family of distributions: properties and applications to the Weibull model. Journal of Nonlinear Sciences and Applications, 12(1), 1-20. DOI: https://doi.org/10.22436/jnsa.012.01.01
  7. Elbatal, I., Merovci, F., Elgarhy, M. (2013). A new generalized Lindley distribution. Mathematical Theory and Modeling, 3(13), 30-47.
  8. Eugene, N., Lee, C., Famoye, F. (2002). The beta-normal distribution and its applications. Communication in Statistics-Theory and Methods, 31(4), 497-512. DOI: https://doi.org/10.1081/STA-120003130
  9. Gupta, A.K., Zeng, W.B., Wu, Y. (2010). Exponential distribution. Probability and Statistical Models, 23-43. DOI: https://doi.org/10.1007/978-0-8176-4987-6_2
  10. Gupta, R. D. Kundu, D. (1999). Generalized exponential distributions. Australian & New Zealand Journal of Statistics, 41( 2), 173-188. DOI: https://doi.org/10.1111/1467-842X.00072
  11. Gupta, R. D. Kundu, D. (2001). Exponentiated exponential family: An alternative to gamma and weibull distribution. Biometrical Journal, 43(1), 117-130. DOI: https://doi.org/10.1002/1521-4036(200102)43:1<117::AID-BIMJ117>3.0.CO;2-R
  12. Hassan, A.S., Mohamd, R. E., Elgarhy, M., Fayomic, A. (2019). Alpha power transformed extended exponential distribution: properties and applications. Journal of Nonlinear Sciences and Applications, 12, 239-251. DOI: https://doi.org/10.22436/jnsa.012.04.05
  13. Jones, M.C. (2004). Families of distributions arising from the distributions of order statistics. 13(1), 1-43. DOI: https://doi.org/10.1007/BF02602999
  14. Lee, C., Famoye, F., Alzaatreh, A.Y. (2013). Methods for generating families of univariate continuous distributions in the recent decades. WIREs Computational Statistics, 5, 219-238. DOI: https://doi.org/10.1002/wics.1255
  15. Maguire, B.A., Pearson, E. S., Wynn, A. H. A. (1952). The time intervals between industrial accidents. Biometrika, 39, 168-180. DOI: https://doi.org/10.1093/biomet/39.1-2.168
  16. Mahdavi, A., Kundu, D. (2017).A new method for generating distributions with an application to Exponential distribution. Communication in Statistics-Theory and Methods, 46(13), 6543-6557. DOI: https://doi.org/10.1080/03610926.2015.1130839
  17. Marshall, A.W., Olkin, I. (1997). A new method for adding a parameter to a family of distributions with application to the Exponential and Weibull families. Biometrika, 84(3), 641-652. DOI: https://doi.org/10.1093/biomet/84.3.641
  18. Mudholkar, G.S., Srivastava, D.K. (1993). Exponentiated Weibull family for analyzing bathtub failure-rate Data. IEEE Transaction on Reliability, 36(2), 299-302. DOI: https://doi.org/10.1109/24.229504
  19. Pescim, R.R., Demétrio, C.G.B., Cordeiro, G.M., Ortega, E.M.M., Urbano, M.R. (2010). The beta generalized half-normal distribution. Computational Statistics and Data Analysis, 54, 945-957. DOI: https://doi.org/10.1016/j.csda.2009.10.007
  20. Tahir, M.H., Nadarajah, S. (2015). Parameter induction in continuous univariate distributions: Well-established G families. Annals of the Brazilian Academy of Sciences, 87(2), 539-568. DOI: https://doi.org/10.1590/0001-3765201520140299
  21. Unal, C., Cakmakyapan, S., Ozel, G. (2018). Alpha power inverted exponential distribution: properties and application. Journal of Science, 31(3), 954-965.