Main Article Content
Abstract
In this article, we introduce a new generalized family of Esscher transformed Laplace distribution, namely the Kumaraswamy Esscher transformed Laplace distribution. We study the various properties of the distribution including the survival function, hazard rate function, cumulative hazard rate function and reverse hazard rate function. The parameters of the distribution are estimated using the maximum likelihood method of estimation. A real application of this distribution on breaking stress of carbon fibres is also considered. Further, we introduce and study the exponentiated and transmuted exponentiated Kumaraswamy Esscher transformed Laplace distributions.
Keywords
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following License
CC BY: This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
References
- Abdulkabir, M. and Ipinyomi, R. A. (2020). Type II half logistic exponentiated exponential distribution: properties
- and applications. Pakistan Journal of Statistics, 36(1), 23-28.
- Ahmad, Z., Ampadu, C.B., Hamedani, G.G., Jamal, F. and Nasir, M.A. (2019). The New Exponentiated T-X Class
- of Distributions: Properties, Characterizations and Application. Pak.j.stat.oper.res., XV(IV), 941-962.
- Ahmad, Z., Elgarhy, M., Hamedani, G.G. (2018). A new Weibull-X family of distributions: Properties, characterizations
- and applications. J. Stat. Distrib. Appl., 5.
- Akinsete, F. Famoye, C. Lee, (2008). The beta-Pareto distribution, Statistics, 42, 547-563.
- Ali M., Khalil A., Ijaz M. and Saeed N. (2021). Alpha-Power Exponentiated Inverse Rayleigh distribution and its
- applications to real and simulated data. PloS one, 16(1), e0245253. pmid:33444340.
- Alizadeh M., Tahir M. H., Cordeiro G. M., Zubair M. and Hamedani G. G. (2015). The Kumaraswamy Marshal-
- Olkin family of distributions. Journal of the Egyptian Mathematical Society, 23, 546557
- Alzaghal, A., LEE, C. and Famoye, F. (2013). Exponentiated T-X family of distributions with some applications.
- Int J Statist Probab, 2, 31-49.
- Amer Ibrahim Al-Omari, Ahmed. M. H. Al-khazaleh and Moath Al-khazaleh (2019).Exponentiated new WEIBULLPARETO
- distribution. Revista Investigation Operational, 40(2), 165-175.
- Badr M. and Ijaz M. (2021). The Exponentiated Exponential Burr XII distribution: Theory and application to
- lifetime and simulated data. PLoS ONE, 16(3), e0248873. https://doi.org/10.1371/journal.pone.0248873.
- Cordeiro, G.M., Ortega, E.M.M., Nadarajah, S. (2010). The KumaraswamyWeibull distribution with application
- to failure data. J. Frankl. Inst., 347, 13991429.
- Dais George and Sebastian George (2011). Application of Esscher transformed Laplace distribution in Web
- server data. Journal of Digital Information Management, 9(1), 19-26.
- Dais George and Sebastian George (2013). Marshall-Olkin Esscher transformed Laplace distribution and processes.
- Brazelian Journal of Probability and Statistics, 27(2), 162-184.
- Dais George, Sebastian George and Rimsha, H. (2016). Esscher transformed and geometric Esscher transformed
- Laplace processes. Far East Journal of Theoretical Statistics, 52(6), 455-483.
- Dawlah Al-Sulami (2020). Exponentiated Exponential Weibull Distribution: Mathematical Properties and Application.
- American Journal of Applied Sciences, 17, DOI: 10.3844/ajassp.2020, 188-195.
- Elgarhy, M., Muhammad Ahsan ul Haq and Qurat Ain (2018). Exponentiated generalized Kumaraswamy distribution
- with applications. Annals of Data Science, Springer, 5(2), 273-292.
- Esscher, F. (1932). On the probability function in the collective theory of risk, Scandinavian Actuarial Journal,
- , 175-195.
- Francisco Louzada1, Vicente G. Cancho1 and Paulo H. Ferreira (2020). The exponentiated Poisson-exponential
- distribution: a distribution with increasing, decreasing and bathtub failure rate. Journal of Statistical Theory
- and Applications, 19(2), 274-285.
- Gompertz, B. (1825). On the nature of the function expressive of the law of human mortality, and on a new mode
- of determining the value of life contingencies. Philos Trans R Soc Lond, 115, 513-585.
- Handique L. and Chakraborty S. (2015a). The Marshall-Olkin-Kumaraswamy-G family of distributions. arXiv:1509.08108
- [math.ST].
- Handique L. and Chakraborty S. (2015b). The generalized Marshall-Olkin-Kumaraswamy-G family of distributions.
- arXiv:1510.08401 [math.ST].
- Hassan, A.S. and Elgarhy, M. (2016). A new family of exponentiated Weibull-generated distributions. International
- Journals of Mathematics and its Applications, 4(1), 135-148.
- Krishnakumari, K. and Dais George (2020). Discrete Esscher transformed Laplace distribution and its applications,
- Stochastic Modeling and Applications, 24(2), 149-159.
- Kozubowski, T. J. and Podgorski, K. (2000). Asymmetric Laplace distributions. Math.Sci., 25, 37-46.
- Kumaraswamy, P. (1980). Generalized probability density-function for double-bounded random processes. J
- Hydrol, 46, 70-88.
- Lehmann, E. L. (1953). The power of rank tests. Ann Math Statist, 24, 23-43.
- Muhammad Shuaib Khan1, Robert King and Irene Lena Hudson, (2016). Transmuted Kumaraswamy distribution,
- Statistics in Transition new series, 17(2), 183-210.
- Nadarajah S and Kotz S. (2004). The beta Gumbel distribution. Math Probl Eng, 10, 323-332.
- Nassar, M. M. and Elmasry, A. (2012). A study of generalized Logistic distributions. Journal of Egyptian
- Mathematical Society, 20(2), 126-13.
- Nassar M. M. and Nada N. K. (2011). The beta generalized Pareto distribution. J Statist Adv Theor Appl, 6, 1-17.
- Nassar M. M. and Nada N. K. (2012). A study of generalized logistic distributions. Journal of Egyptian
- Mathematical Society, 20(2), 126-133.
- Nassar M. M. and Nada N. K. (2013). A new generalization of the Pareto geometric distribution. Journal of
- Egyptian Mathematical Society, 21(2), 148-155.
- Rimsha, H. and Dais George (2019). q-Esscher transformed Laplace distribution. Communication in Statistics-
- Theory and Methods, 48(7), 1563-1578.
- Rimsha, H. and Dais George (2020). Multivariate Esscher transformed Laplace distribution. Journal of Statistical
- Theory and Applications, 19(2), 325-331.
- Sebastian George and Dais George (2012). Esscher transformed Laplace distributions and its applications,
- Journal of Probability and Statistical Sciences, 10(2), 135-152.
- Sebastian George, Dais George and Ligi George (2016). Log-Esscher transformed Laplace distributions and its
- applications, Journal of Probability and Statistical Sciences, 14(1), 29-44.
- Sher B. Chhetri, Alfred A. Akinsete, Gokarna Aryal and Hongwei Long (2017). The Kumaraswamy transmuted
- Pareto distribution. Journal of Statistical Distributions and Applications, 4(1), 1-24.
- Suleman Nasirua, P., Peter N. Mwitab and Oscar Ngesa (2019). Exponentiated generalized exponential Dagum
- distribution. Journal of King Saud University - Science, 31(3), 362-371.
- Tahir, M. H. and Nadarajah, S. (2015). Parameter induction in continuous univariate distributions: Wellestablished
- G families. Anais da Academia Brasileira de Cincias, 87(2), 539-568.
- Tahir NawazSajid HussainTanvir, Ahmad Farah and Naz Muhammad Abid (2020). Kumaraswamy generalized
- Kappa distribution with application to stream flow data. Journal of King Saud University - Science, 32(1),
- -182.
- Verhulst, P. F. (1838). Notice sur la loi la population suit dans son accroissement. Correspondence mathematique
- et physique, 10, 113-121.
- Verhulst, P. F. (1845). Recherches mathematiques sur la loi-accroissement de la population. Nou velles
- Memoires de Academie Royale des Sciencs et Belles-Lettres de Bruxelles, 2, 18-38.
- Verhulst, P. F. (1847). Deuxieme memoire sur la loi accroissement de la population. Memoires de Academie
- Royale des Sciences, des Lettres et des Beaux-Arts de Belgique, 2, 20-32.
- Zohdy M. Nofal, Emrah Altun, Ahmed Z. Afify, and Ahsanullah, M. (2019). The generalized Kumaraswamy-G
- family of distributions. Journal of Statistical Theory and Applications, 18(4), 329-342.