Main Article Content

Abstract

In this article, we introduce a new generalized family of Esscher transformed Laplace distribution, namely the Kumaraswamy Esscher transformed Laplace distribution. We study the various properties of the distribution including the survival function, hazard rate function, cumulative hazard rate function and reverse hazard rate function. The parameters of the distribution are estimated using the maximum likelihood method of estimation. A real application of this distribution on breaking stress of carbon fibres is also considered. Further, we introduce and study the exponentiated and transmuted exponentiated Kumaraswamy Esscher transformed Laplace distributions.

Keywords

Esscher transformation Exponentiated Kumaraswamy Esscher transformed Laplace distribution Hazard rate function Kumaraswamy Esscher transformed Laplace distribution Transmuted exponentiated Kumaraswamy Esscher transformed Laplace distribution

Article Details

How to Cite
George, D., & Rimsha H. (2023). Kumaraswamy Esscher Transformed Laplace Distribution: Properties, Application and Extensions: Kumaraswamy Esscher Transformed Laplace Distribution. Pakistan Journal of Statistics and Operation Research, 19(1), 51-62. https://doi.org/10.18187/pjsor.v19i1.3818

References

  1. Abdulkabir, M. and Ipinyomi, R. A. (2020). Type II half logistic exponentiated exponential distribution: properties
  2. and applications. Pakistan Journal of Statistics, 36(1), 23-28.
  3. Ahmad, Z., Ampadu, C.B., Hamedani, G.G., Jamal, F. and Nasir, M.A. (2019). The New Exponentiated T-X Class
  4. of Distributions: Properties, Characterizations and Application. Pak.j.stat.oper.res., XV(IV), 941-962.
  5. Ahmad, Z., Elgarhy, M., Hamedani, G.G. (2018). A new Weibull-X family of distributions: Properties, characterizations
  6. and applications. J. Stat. Distrib. Appl., 5.
  7. Akinsete, F. Famoye, C. Lee, (2008). The beta-Pareto distribution, Statistics, 42, 547-563.
  8. Ali M., Khalil A., Ijaz M. and Saeed N. (2021). Alpha-Power Exponentiated Inverse Rayleigh distribution and its
  9. applications to real and simulated data. PloS one, 16(1), e0245253. pmid:33444340.
  10. Alizadeh M., Tahir M. H., Cordeiro G. M., Zubair M. and Hamedani G. G. (2015). The Kumaraswamy Marshal-
  11. Olkin family of distributions. Journal of the Egyptian Mathematical Society, 23, 546557
  12. Alzaghal, A., LEE, C. and Famoye, F. (2013). Exponentiated T-X family of distributions with some applications.
  13. Int J Statist Probab, 2, 31-49.
  14. Amer Ibrahim Al-Omari, Ahmed. M. H. Al-khazaleh and Moath Al-khazaleh (2019).Exponentiated new WEIBULLPARETO
  15. distribution. Revista Investigation Operational, 40(2), 165-175.
  16. Badr M. and Ijaz M. (2021). The Exponentiated Exponential Burr XII distribution: Theory and application to
  17. lifetime and simulated data. PLoS ONE, 16(3), e0248873. https://doi.org/10.1371/journal.pone.0248873.
  18. Cordeiro, G.M., Ortega, E.M.M., Nadarajah, S. (2010). The KumaraswamyWeibull distribution with application
  19. to failure data. J. Frankl. Inst., 347, 13991429.
  20. Dais George and Sebastian George (2011). Application of Esscher transformed Laplace distribution in Web
  21. server data. Journal of Digital Information Management, 9(1), 19-26.
  22. Dais George and Sebastian George (2013). Marshall-Olkin Esscher transformed Laplace distribution and processes.
  23. Brazelian Journal of Probability and Statistics, 27(2), 162-184.
  24. Dais George, Sebastian George and Rimsha, H. (2016). Esscher transformed and geometric Esscher transformed
  25. Laplace processes. Far East Journal of Theoretical Statistics, 52(6), 455-483.
  26. Dawlah Al-Sulami (2020). Exponentiated Exponential Weibull Distribution: Mathematical Properties and Application.
  27. American Journal of Applied Sciences, 17, DOI: 10.3844/ajassp.2020, 188-195.
  28. Elgarhy, M., Muhammad Ahsan ul Haq and Qurat Ain (2018). Exponentiated generalized Kumaraswamy distribution
  29. with applications. Annals of Data Science, Springer, 5(2), 273-292.
  30. Esscher, F. (1932). On the probability function in the collective theory of risk, Scandinavian Actuarial Journal,
  31. , 175-195.
  32. Francisco Louzada1, Vicente G. Cancho1 and Paulo H. Ferreira (2020). The exponentiated Poisson-exponential
  33. distribution: a distribution with increasing, decreasing and bathtub failure rate. Journal of Statistical Theory
  34. and Applications, 19(2), 274-285.
  35. Gompertz, B. (1825). On the nature of the function expressive of the law of human mortality, and on a new mode
  36. of determining the value of life contingencies. Philos Trans R Soc Lond, 115, 513-585.
  37. Handique L. and Chakraborty S. (2015a). The Marshall-Olkin-Kumaraswamy-G family of distributions. arXiv:1509.08108
  38. [math.ST].
  39. Handique L. and Chakraborty S. (2015b). The generalized Marshall-Olkin-Kumaraswamy-G family of distributions.
  40. arXiv:1510.08401 [math.ST].
  41. Hassan, A.S. and Elgarhy, M. (2016). A new family of exponentiated Weibull-generated distributions. International
  42. Journals of Mathematics and its Applications, 4(1), 135-148.
  43. Krishnakumari, K. and Dais George (2020). Discrete Esscher transformed Laplace distribution and its applications,
  44. Stochastic Modeling and Applications, 24(2), 149-159.
  45. Kozubowski, T. J. and Podgorski, K. (2000). Asymmetric Laplace distributions. Math.Sci., 25, 37-46.
  46. Kumaraswamy, P. (1980). Generalized probability density-function for double-bounded random processes. J
  47. Hydrol, 46, 70-88.
  48. Lehmann, E. L. (1953). The power of rank tests. Ann Math Statist, 24, 23-43.
  49. Muhammad Shuaib Khan1, Robert King and Irene Lena Hudson, (2016). Transmuted Kumaraswamy distribution,
  50. Statistics in Transition new series, 17(2), 183-210.
  51. Nadarajah S and Kotz S. (2004). The beta Gumbel distribution. Math Probl Eng, 10, 323-332.
  52. Nassar, M. M. and Elmasry, A. (2012). A study of generalized Logistic distributions. Journal of Egyptian
  53. Mathematical Society, 20(2), 126-13.
  54. Nassar M. M. and Nada N. K. (2011). The beta generalized Pareto distribution. J Statist Adv Theor Appl, 6, 1-17.
  55. Nassar M. M. and Nada N. K. (2012). A study of generalized logistic distributions. Journal of Egyptian
  56. Mathematical Society, 20(2), 126-133.
  57. Nassar M. M. and Nada N. K. (2013). A new generalization of the Pareto geometric distribution. Journal of
  58. Egyptian Mathematical Society, 21(2), 148-155.
  59. Rimsha, H. and Dais George (2019). q-Esscher transformed Laplace distribution. Communication in Statistics-
  60. Theory and Methods, 48(7), 1563-1578.
  61. Rimsha, H. and Dais George (2020). Multivariate Esscher transformed Laplace distribution. Journal of Statistical
  62. Theory and Applications, 19(2), 325-331.
  63. Sebastian George and Dais George (2012). Esscher transformed Laplace distributions and its applications,
  64. Journal of Probability and Statistical Sciences, 10(2), 135-152.
  65. Sebastian George, Dais George and Ligi George (2016). Log-Esscher transformed Laplace distributions and its
  66. applications, Journal of Probability and Statistical Sciences, 14(1), 29-44.
  67. Sher B. Chhetri, Alfred A. Akinsete, Gokarna Aryal and Hongwei Long (2017). The Kumaraswamy transmuted
  68. Pareto distribution. Journal of Statistical Distributions and Applications, 4(1), 1-24.
  69. Suleman Nasirua, P., Peter N. Mwitab and Oscar Ngesa (2019). Exponentiated generalized exponential Dagum
  70. distribution. Journal of King Saud University - Science, 31(3), 362-371.
  71. Tahir, M. H. and Nadarajah, S. (2015). Parameter induction in continuous univariate distributions: Wellestablished
  72. G families. Anais da Academia Brasileira de Cincias, 87(2), 539-568.
  73. Tahir NawazSajid HussainTanvir, Ahmad Farah and Naz Muhammad Abid (2020). Kumaraswamy generalized
  74. Kappa distribution with application to stream flow data. Journal of King Saud University - Science, 32(1),
  75. -182.
  76. Verhulst, P. F. (1838). Notice sur la loi la population suit dans son accroissement. Correspondence mathematique
  77. et physique, 10, 113-121.
  78. Verhulst, P. F. (1845). Recherches mathematiques sur la loi-accroissement de la population. Nou velles
  79. Memoires de Academie Royale des Sciencs et Belles-Lettres de Bruxelles, 2, 18-38.
  80. Verhulst, P. F. (1847). Deuxieme memoire sur la loi accroissement de la population. Memoires de Academie
  81. Royale des Sciences, des Lettres et des Beaux-Arts de Belgique, 2, 20-32.
  82. Zohdy M. Nofal, Emrah Altun, Ahmed Z. Afify, and Ahsanullah, M. (2019). The generalized Kumaraswamy-G
  83. family of distributions. Journal of Statistical Theory and Applications, 18(4), 329-342.