Main Article Content
Abstract
This paper introduced a new life time data analysis distribution name three parameters quasi gamma distribution discussed about its some properties including moment generating function, rth moment about origin and mean, mean deviations, reliability measurements, Bonferroni and Lorenz curve, Order statistics, Renyi entropy, also discussed about maximum likelihood method and real-life data applications.
Keywords
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following License
CC BY: This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
References
- Ali, A. Rashid, Q. Zubair, M. and Jamshaid, M. T. (2018). A Quasi Lindley Pareto Distribution. Proceedings of the Pakistan Academy of Sciences, 55 (2): 32–40.
- Alven, W. (1964). Reliability Engineering by ARINC. Prentice-hall,New Jersey.
- Bader, M. G. and Priest, A. M. (1982). Statistical aspects of fiber and bundle strength in hybrid composites . In T. K. Hayashi, Progressin Science in Engineering Composites, ICCM-IV (pp. 1129 -1136). Tokyo.
- Bonferroni, C. E. (1930). Elementi di Statistca generale . Seeber, Firenze.
- Cordeiro, G. M., Ortega, E. M. M., and Silva, G. O. (2013). The exponentiated generalized gamma distribution with application to lifetime data. Journal of Statistical Computation and Simulation, 81:827-842.
- Fuller, E. J., Frieman, S., Quinn, J., Quinn, G. and Carter. W. (1994). Fracture mechanics approach to the design of glass. International Society for Optical Engineering, 2286, pp. 419-430.
- Gross, A. J. and Clark, V. A. (1975). Survival Distributions: Reliability Applications in the Biometrical Sciences . New York: John Wiley.
- Gupta, R. D. and Kundu, D. (2006). Closeness of Gamma and Generalized Exponential Distribution. Communications in Statistics - Theory and Methods, Pages 705-721 .
- Johnson, N. L., Kotz, S., and Balakrishanan, N. (1994). Continuous Univariate Distributions, Second edition,. New York: John Wiley and Sons.
- Milton, A., and Stegun, I. A. (1972). "Handbook of Mathematical Functions with Formulas", Graphs, and Mathematical Tables. New York: Dover: eds.
- Nadarajah, S., Gupta, A. K. (2007). A generalized gamma distribution with application to drought data. Mathematics and Computers in Simulation, 74:1-7.
- Nichols, M.D. and Padgett, W.J. (2006). A Bootstrap control chart for Weibull percentiles . Quality and Reliability Engineering International, 22, 141-151. .
- Rashid, Q. Yaseen, D. H. M. and Jamshaid, M. T. (2019). Quasi Amarendra Distribution and Its Properties. Global Scientific Journals, (7) 490-502.
- Renyi, A. (1961). On measures of entropy and information. in proceedings of the 4th Berkeley symposium on Mathematical Statistics and Probability,Berkeley, (pp. 1: 547-561).
- Shanker, R. and Mishra, A. (2013a). A quasi Lindley distribution. African Journal of Mathematics and Computer Science and Research, Vol. 6(4), pp. 64-71.
- Shanker, R. and Shukla, K. K. (2018). A Quasi Ardhana distribution and Its Application. International Journal of Statistics and Systems, ISSN 0973-2675 Volume 13, Number 1, pp. 61-80.
- Shanker, R. Shukla, K. K. Sharma, and S. Shanker, R. (2018). A quasi exponential distribution. Biometrics & Biostatistics International Journal, 7(2):90–94.
- Shanker, R., and Amanuel, A. G. (2013 b). A new quasi Lindley distribution. International Journal of Statistics and Systems, 8 (2), pp. 143–156.
- Shanker, R., and Shukla, K. K. (2017). A Quasi Shanker Distribution and Its Application. Biometrics & Biostatistics International Journal, 6(1), 1 – 10.
- Shanker, R., and Shukla, K. K. Sharma, S. Shanker, R. (2018). A quasi exponential distribution. Biometrics & Biostatistics International Journal, 7(2):90–94.
- Shanker, R., Shukla, K. K., Sharma, S. and Shanker, R. (2018). A Quasi Gamma Distribution. International Journal of Statistics and Applied Mathematics, 3(4): 208-217.
- Weibull, W. (1951). A statistical distribution of wide applicability. Journal of Applied Mathematics, 18:293-297.