Main Article Content


In this paper, the derivation of the likelihood function for parameter estimation based on double ranked set sampling (DRSS) designs used by Sabry; (2019) for the estimation of the parameters of the power generalized Weibull distribution is considered. The developed likelihood function is then used for the estimation of the exponential Pareto distribution parameters. The maximum likelihood estimators (MLEs) are then investigated and compared to the corresponding ones based on simple random sampling (SRS) and ranked set sampling (RSS) designs. A Monte Carlo simulation is conducted and the absolute relative biases, mean square errors, and efficiencies are compared for the different designs. The relative efficiency of the DRSS estimates with respect to other designs was found to be higher in case of the exponential Pareto distribution (EP).


Simple Random Sampling Ranked Set Sampling Double Ranked Set Sampling Estimation Parameter Maximum Likelihood Estimation

Article Details

How to Cite
Sabry , M. H., & Almetwally, E. M. (2021). Estimation of the Exponential Pareto Distribution’s Parameters under Ranked and Double Ranked Set Sampling Designs. Pakistan Journal of Statistics and Operation Research, 17(1), 169-184.


    Abed Al-Kadim K., Boshi M. A. (2013). "Exponential Pareto Distribution". Mathematical Theory and Modeling, 3(5): 135-146
    Abu-Dayyeh, W. and Sawi, E. A. (2009). Modified inference about the mean of the exponential distribution using moving extreme ranked set sampling. Statistical Papers, 50(2), 249-259.
    Abu-Dayyeh, W., Assrhani, A., and Ibrahim, K. (2013). Estimation of the shape and scale parameters of Pareto distribution using ranked set sampling. Statistical Papers, 54(1), 207-225.
    Al-Odat, M. T., and Al-Saleh, M. F. (2001). A variation of ranked set sampling. Journal of Applied Statistical Science, 10(2), 137-146.
    Al-Odat, N. A. (2009). Modiflcation in Ratio Estimator Using Rank Set Sampling. European Journal of Scientific Research ,volume 29, 265-268.
    Al-Omari, A. and Al-Hadhrami, S. A. (2011). On maximum likelihood estimators of the parameters of a modified Weibull distribution using extreme ranked set sampling. Journal of Modern Applied Statistical Methods, 10(2), 607-617
    Al-Omari, A. I., (2010). Improvement in Estimating the Population Mean in Double Extreme Ranked Set Sampling. International Mathematical Forum, 26:1265 – 1275.
    Al-Omari, A. I., Al-Zubi , L. M. and Khazaleh, A. (2015). On the population median estimation using quartile double ranked set sampling. Pak.j.stat.oper.res., Vol. XI No.4 2015 pp513-524.
    Al-Omari, Amer Ibrahim and Al-Hadhrami, Said Ali (2011) "On Maximum Likelihood Estimators of the Parameters of a Modified Weibull Distribution Using Extreme Ranked Set Sampling," Journal of Modern Applied Statistical Methods: Vol. 10 : Iss. 2 , Article 18.
    Al-Saleh M.F., Al-Omari AI. (2002). Multistage ranked set sampling. Journal of Statistical Planning and Inference 102: 273–286
    Al-Saleh, M.F. and Al-Hadrami, S.A. (2003). Estimation of the mean of the exponential distribution using moving extremes ranked set sampling. Statistical Papers 44, 367-382.
    Al-Saleh, M.F. and Al-Hadrami, S.A. (2011). On maximum likelihood estimators of the parameters of a modified weibull distribution. Journal of Modern Applied Statistical Method, Volume 10 , Issue 2, 607-617.
    Al-Saleh, M.F. and Al-Kadri, M.A. (2000). Double ranked set sampling. Statistics and Probability Letters 48, 205-212
    Al-Saleh, M.F. and Zheng, G. (2002). Modified maximum likelihood estimator based on ranked set sampling. Annals of the Institute of Statistical Mathematics 54, 641–658.
    Barry C. A., Balakrishnan N., Nagaraja, H. N., (2008)." A first course in Order Statistics". Classics in Applied Mathematics, Siam, Society for Industrial and Applied Mathematics- Philadelphia
    Brar, S. S., Malik ,S. C. and Kaur ,J. (2017). Estimation of Median and Mode Using Ranked Set Sampling. International Journal of Statistics and Systems. ISSN 0973-2675, Volume 12, 525–533.
    David H. A., Nagaraja H. N., (2005). "Order Statistics". Wiley Series in Probability and Statistics, John Wiley & Sons, Inc.
    Dell, T.R. and Clutter, J. L. (1972). Ranked set sampling with order statistics background. Biometrics, 28, 545-553.
    Essam M., Tang T. B., Wei Ho E. T., Chen H., (2017). "Dynamic Point Stochastic Rounding Algorithm for Limited Precision Arithmetic in Deep Belief Network Training". 8th International IEEE EMBS Conference on Neural Engineering, 629-632.
    Halls, L.K. and Dell. T.R. (1966). Trials of ranked set sampling for forage yields. Forest Science, 12, 22-26.
    Haq,A., Brown, J., Moltchanova, E., and Al-Omari, AI. (2013). Partial ranked set sampling design. DOI: 10.1002/env.2203
    Hassan, A. S. (2013). Maximum likelihood and Bayes estimators of the unknown parameters for exponential distribution using ranked set sampling. International Journal of Engineering Research and Applications. 3, 720-725.
    Höhfeld M., Fahlman S. E., (1992). "Probabilistic rounding in neural network learning with limited precision". Neurocomputing 4(6):291-299
    Khamnei, H.J. and Mayan, S.R. (2016). Comparison of Parameter Estimation in the Exponentiated Gumbel Distribution based on Ranked Set Sampling and Simple Random Sampling. Journal of Mathematics and Statistical Science, Volume 2016, 490-497
    Maharota, K. and Nanda, P. (1974). Unbiased estimator of parameter by order statistics in the case of censored samples. Biometrika, 61(3), 601-606.
    McIntyre, G.A. (1952). A method for unbiased selective sampling, using ranked sets. Australian Journal of Agricultural Research, 3, 385-390.
    Muttlak, H. A. (1997). `Median ranked set sampling', Journal of Applied Statistics Sciences, 6.
    Muttlak, H.A. (2003). Modified ranked set sampling methods. Pakistan Journal of Statistics, 19, 315-323.
    Samawi, H. M., Ahmed, M. S. and Abu-Dayyeh, W. A. (1996). Estimating the population mean using extreme ranked set sampling. The Biometrical J., 38(5), 577-586.
    Weibull W. (1951). "A statistical distribution function of wide applicability". J Appl Mech;18:293-297.
    Wolfe, D.A. 2004. Ranked set sampling: an approach to more efficient data collection. Statistical Science, 19(4): 636-643