Main Article Content

Abstract

In this paper, we introduce and study a new extension of Lomax distribution with four-parameter named as the Marshall–Olkin alpha power Lomax (MOAPL) distribution. Some statistical properties of this distribution are discussed. Maximum likelihood estimation (MLE), maximum product spacing (MPS) and least Square (LS) method for the MOAPL distribution parameters are discussed. A numerical study using real data analysis and Monte-Carlo simulation are performed to compare between different methods of estimation. Superiority of the new model over some well-known distributions are illustrated by physics and economics real data sets. The MOAPL model can produce better fits than some well-known distributions as Marshall–Olkin Lomax, alpha power Lomax, Lomax distribution, Marshall–Olkin alpha power exponential, Kumaraswamy-generalized Lomax, exponentiated  Lomax  and power Lomax.

Keywords

Marshall–Olkin alpha power Lomax distribution maximum likelihood estimation maximum product spacing least square method data analysis

Article Details

How to Cite
Almongy , H. M., Almetwally, E. M., & Mubarak, A. E. (2021). Marshall–Olkin Alpha Power Lomax Distribution: Estimation Methods, Applications on Physics and Economics. Pakistan Journal of Statistics and Operation Research, 17(1), 137-153. https://doi.org/10.18187/pjsor.v17i1.3402

References

    Abd-Elfattah, A. M., & Alharbey, A. H. (2010). Estimation of Lomax parameters based on generalized probability weighted moment. Journal of King Abdulaziz University: Science, 148(633), 1-28.
    Abdul-Moniem, I.B., & Abdel-Hameed, H.F., (2012). On exponentiated Lomax distribution. International Journal of Mathematical Archive, 3(5), 1-7.
    Ahmad, H. H., & Almetwally, E. (2020). Marshall-Olkin Generalized Pareto Distribution: Bayesian and Non Bayesian Estimation. Pakistan Journal of Statistics and Operation Research, 21-33.‏
    Alice, T., & Jose, K. K. (2005). Marshall-Olkin logistic processes. STARS Int J, 6, 1-11.
    Almetwally, E. M., & Almongy, H. M. (2019). Maximum Product Spacing and Bayesian Method for Parameter Estimation for Generalized Power Weibull Distribution under Censoring Scheme. Journal of Data Science, 17(2), 407-444.‏
    Almetwally, E. M., & Almongy, H. M. (2019a). Estimation Methods for the New Weibull-Pareto Distribution: Simulation and Application. Journal of Data Science, 17(3), 610-630.‏
    Almetwally, E. M., & Almongy, H. M. (2019b). Maximum Product Spacing and Bayesian Method for Parameter Estimation for Generalized Power Weibull Distribution under Censoring Scheme. Journal of Data Science, 17(2), 407-444.‏
    Al-Zahrani, B., & Sagor, H. (2014). The poisson-lomax distribution. Revista Colombiana de Estadística, 37(1), 225-245.‏
    Ashour, S. K., Abdelfattah, A. M., & Mohamed, B. S. K. (2011). Parameter estimation of the hybrid censored Lomax distribution. Pakistan Journal of Statistics and Operation Research,7, 1-20.
    Basheer, A. M. (2019). Alpha power inverse Weibull distribution with reliability application. Journal of Taibah University for Science, 13(1), 423-432.‏
    Birnbaum, Z. W., & Saunders, S. C. (1969). Estimation for a family of life distributions with applications to fatigue. Journal of Applied probability, 6(2), 328-347.‏
    Chahkandi, M., & Ganjali, M. (2009). On some lifetime distributions with decreasing failure rate. Computational Statistics & Data Analysis, 53(12), 4433-4440.
    Cheng, R. C. H., & Amin, N. A. K. (1983). Estimating parameters in continuous univariate distributions with a shifted origin. Journal of the Royal Statistical Society. Series B (Methodological), 394-403.‏
    Cordeiro, G. M., Ortega, E. M., & Popović, B. V. (2015). The gamma-Lomax distribution. Journal of Statistical computation and Simulation, 85(2), 305-319.‏
    Dey, S., Ghosh, I., & Kumar, D. (2019a). Alpha-power transformed lindley distribution: properties and associated inference with application to earthquake data. Annals of Data Science, 6(4), 623-650.‏
    Dey, S., Nassar, M., & Kumar, D. (2019b). Alpha power transformed inverse Lindley distribution: A distribution with an upside-down bathtub-shaped hazard function. Journal of Computational and Applied Mathematics, 348, 130-145.‏ ‏
    El-Bassiouny, A. H., Abdo, N. F., & Shahen, H. S. (2015). Exponential lomax distribution. International Journal of Computer Applications, 121(13), 24–29.‏
    Elbatal, I., Ahmad, Z., Elgarhy, B. M., & Almarashi, A. M. (2018). A New Alpha Power Transformed Family of Distributions: Properties and Applications to the Weibull Model. Journal of Nonlinear Science and Applications, 12(1), 1-20.‏
    El-Sherpieny, E. S. A., Almetwally, E. M., & Muhammed, H. Z. (2020). Progressive Type-II hybrid censored schemes based on maximum product spacing with application to Power Lomax distribution. Physica A: Statistical Mechanics and its Applications, 124251.‏
    Ghitany, M. E. (2005). Marshall-Olkin extended Pareto distribution and its application. International Journal of Applied Mathematics, 18(1), 17.‏
    Ghitany, M. E., Al-Awadhi, F. A., & Alkhalfan, L. A. (2007). Marshall–Olkin extended Lomax distribution and its application to censored data. Communications in Statistics—Theory and Methods, 36(10), 1855-1866.‏
    Gupta, R. C., Ghitany, M. E., & Al-Mutairi, D. K. (2010). Estimation of reliability from Marshall–Olkin extended Lomax distributions. Journal of Statistical Computation and Simulation, 80(8), 937-947.
    Hassan A. S., & Al-Ghamdi A. (2009). Optimum step stress accelerated life testing for Lomax distribution. J Appl Sci Res, 5(12), 2153–2164.
    Hassan, A. S., & Abd-Allah, M. (2018). Exponentiated Weibull-Lomax distribution: properties and estimation. Journal of Data Science, 16(2), 277-298.
    Hassan, A. S., & Abd-Allah, M. (2019). On the Inverse Power Lomax Distribution. Annals of Data Science, 6(2), 259-278.‏
    Hassan, A. S., Assar, S. M., & Shelbaia, A. (2016). Optimum step-stress accelerated life test plan for Lomax distribution with an adaptive type-II Progressive hybrid censoring. Journal of Advances in Mathematics and Computer Science, 13(2), 1-19.
    Hassan, A. S., Elgarhy, M., Mohamd, R. E., & Alrajhi, S. (2019). On the Alpha Power Transformed Power Lindley Distribution. Journal of Probability and Statistics, 2019.‏
    Helu, A., Samawi, H., & Raqab, M. Z. (2015). Estimation on Lomax progressive censoring using the EM algorithm. Journal of Statistical Computation and Simulation, 85(5), 1035-1052.
    Kilany, N. M. (2016). Weighted Lomax distribution. SpringerPlus, 5(1), 1862.‏
    Lomax, K., S. (1954) Business failures: another example of the analysis of failure data. J Am Stat Assoc, 49, 847–852.
    Mahdavi, A., & Kundu, D. (2017). A new method for generating distributions with an application to exponential distribution. Communications in Statistics-Theory and Methods, 46(13), 6543-6557.‏
    Marshall, A. W., & Olkin, I. (1997). A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika, 84(3), 641-652.‏
    Nasiri, P., & Hosseini, S. (2012). Statistical inferences for Lomax distribution based on record values (Bayesian and classical). Journal of Modern Applied Statistical Methods, 11(1), 15.
    Nassar, M., Alzaatreh, A., Mead, M., & Abo-Kasem, O. (2017). Alpha power Weibull distribution: Properties and applications. Communications in Statistics-Theory and Methods, 46(20), 10236-10252.‏
    Nassar, M., Kumar, D., Dey, S., Cordeiro, G. M., & Afify, A. Z. (2019). The Marshall–Olkin alpha power family of distributions with applications. Journal of Computational and Applied Mathematics, 351, 41-53.
    Nwezza, E. E., & Ugwuowo, F. I. (2020). The Marshall-Olkin Gumbel-Lomax distribution: properties and applications. Heliyon, 6(3), 1-13.
    Oguntunde, P. E., Khaleel, M. A., Ahmed, M. T., Adejumo, A. O., & Odetunmibi, O. A. (2017). A New Generalization of the Lomax Distribution with Increasing, Decreasing, and Constant Failure Rate. Modelling and Simulation in Engineering, 1-6.‏
    Okasha, H. M., & Kayid, M. (2016). A new family of Marshall–Olkin extended generalized linear exponential distribution. Journal of Computational and Applied Mathematics, 296, 576-592.
    Rady, E. H. A., Hassanein, W. A., & Elhaddad, T. A. (2016). The power Lomax distribution with an application to bladder cancer data. SpringerPlus, 5(1), 1838.‏
    Rao, G. S., Ghitany, M. E., & Kantam, R. R. L. (2009). Marshall–Olkin extended Lomax distribution: An economic reliability test plan. International Journal of Applied Mathematics, 22(1), 139-148.
    Shams, T. M. (2013). The Kumaraswamy-generalized lomax distribution. Middle-East Journal of Scientific Research, 17(5), 641-646.‏
    Swain, J. J., Venkatraman, S., & Wilson, J. R. (1988). Least-squares estimation of distribution functions in Johnson's translation system. Journal of Statistical Computation and Simulation, 29(4), 271-297.