Main Article Content
Abstract
In this paper, a weighted version of the power Lomax distribution referred to the weighted power Lomax distribution, is introduced. The new distribution comprises the length biased and the area biased of the power Lomax distribution as new models as well as containing an existing model as the length biased Lomax distribution as special model. Essential distributional properties of the weighted power Lomax distribution are studied. Maximum likelihood and maximum product spacing methods are proposed for estimating the population parameters in cases of complete and Type-II censored samples. Asymptotic confidence intervals of the model parameters are obtained. A sample generation algorithm along with a Monte Carlo simulation study is provided to demonstrate the pattern of the estimates for different sample sizes. Finally, a real-life data set is analyzed as an illustration and its length biased distribution is compared with some other lifetime distributions.
Keywords
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following License
CC BY: This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
References
- Abdul-Moniem, I. and Abdel-Hameed, H. (2012). A lifetime distribution with decreasing failure rate. International Journal of Mathematical Education, 33(5), 1-7.
- Ahmad, A., Ahmad, S. and Ahmed, A. (2016). Length-biased weighted Lomax distribution: statistical properties and application. Pakistan Journal of Statistics and Operation Research, 12(2), 245-255.
- Atkinson, A. B. and Harrison, A. J. (1978). Distribution of Personal Wealth in Britain. Cambridge University Press.
- Bantan, R., Hassan, A. S. and Elsehetry, M. (2020). Zubair Lomax distribution: properties and estimation based on ranked set sampling. CMC-Computer, Materials and Continua, 65(3), 2169-2187.
- Cheng, R. and Amin, N. (1979). Maximum product of spacings estimation with application to the lognormal distribution (Mathematical Report 79-1). Cardiff: University of Wales Institute of Science and Technology.
- Corbellini, A., Crosato, L., Ganugi, P. and Mazzoli, M. (2010). Fitting Pareto II distributions on firm size: Statistical methodology and economic puzzles. In Skiadas C. (eds) Advances in Data Analysis.Statistics for Industry and Technology (pp. 321-328): Birkhäuser Boston.
- Cordeiro, G. M., Nadarajah, S. and Ortega, E. M. M. (2013). General results for the beta Weibull distribution. Journal of Statistical Computation and Simulation, 83(6), 1082-1114.
- Gupta, R. C. and Keating, J. P. (1986). Relations for reliability measures under length biased sampling. Scandinavian Journal of Statistics, 49-56.
- Harris, C. M. (1968). The Pareto distribution as a queue service discipline. Operations Research, 16(2), 307-313.
- Hassan, A. S. and Abd-Allah, M. (2018). Exponentiated Weibull-Lomax distribution: properties and estimation. Journal of Data Science, 16(2), 277-298.
- Hassan, A. S. and Abd-Allah, M. (2019). On the inverse power Lomax distribution. Annals of Data Science, 6(2), 259-278.
- Hassan, A. S. and Abdelghafar, M. A. (2017). Exponentiated Lomax geometric distribution: properties and applications. Pakistan Journal of Statistics and Operation Research, 13(3), 545-566.
- Hassan, A. S. and Al-Ghamdi, A. (2009). Optimum step stress accelerated life testing for Lomax distribution. Journal of Applied Sciences Research, 5(12), 2153-2164.
- Hassan, A. S. and Mohamed, R. E. (2019a). Parameter estimation for inverted exponentiated Lomax distribution with right censored data. Gazi University Journal of Science, 32(4), 1370-1386.
- Hassan, A. S. and Mohamed, R. E. (2019b). Weibull inverse Lomax distribution. Pakistan Journal of Statistics and Operation Research, 15(3), 587-603.
- Hassan, A. S. and Nassr, S. G. (2018). Power Lomax Poisson distribution: properties and estimation. Journal of Data Science, 18(1), 105-128.
- Hassan, A. S., Assar, S. M. and Shelbaia, A. (2016). Optimum step-stress accelerated life test plan for Lomax distribution with an adaptive type-II progressive hybrid censoring. Journal of Advances in Mathematics and Computer Science, 13(2), 1-19.
- Hassan, A. S., Elgarhy, M. and Mohamed, R. E. (2020a). Statistical properties and estimation of type II half logistic Lomax distribution. Thailand Statistician, 18(3), 290-305.
- Hassan, A. S., Sabry, M. A. and Elsehetry, A. M. (2020b). Truncated power Lomax distribution with application to flood data. Journal of Statistics Applications and Probability, 9(2), 347-359.
- Holland, O., Golaup, A. and Aghvami, A. (2006). Traffic characteristics of aggregated module downloads for mobile terminal reconfiguration. IEE Proceedings-Communications, 153(5), 683-690.
- Khaleel, M. A., Ibrahim, N. A., Shitan, M. and Merovci, F. (2018). New extension of Burr type X distribution properties with application. Journal of King Saud University-Science, 30(4), 450-457.
- Kotz, S. Y. and van Dorp, J. R. (2004). Beyond Beta: Other Continuous Families of Distributions with Bounded Support and Applications. Singapore: World Scientific.
- Lemonte, A. J. and Cordeiro, G. M. (2013). An extended Lomax distribution. Statistics, 47(4), 800-816.
- Merovci, F., Khaleel, M. A., Ibrahim, N. A. and Shitan, M. (2016). The beta Burr type X distribution properties with application. SpringerPlus, 5(1), 697.
- Oguntunde, P. E., Khaleel, M. A., Adejumo, A. O. and Okagbue, H. I. (2018a). A study of an extension of the exponential distribution using logistic-x family of distributions. International Journal of Engineering & Technology, 7(4), 5467-5471.
- Oguntunde, P. E., Khaleel, M. A., Ahmed, M. T., Adejumo, A. O. and Odetunmibi, O. A. (2017). A new generalization of the Lomax distribution with increasing, decreasing, and constant failure rate. Modelling and Simulation in Engineering, 1-7.
- Oguntunde, P. E., Khaleel, M. A., Adejumo, A. O., Okagbue, H. I., Opanuga, A. A. and Owolabi, F. O. (2018b). The Gompertz Inverse Exponential (GoIE) distribution with applications. Cogent Mathematics & Statistics, 5(1), 1507122.
- Oluyede, B. O. (1999). On inequalities and selection of experiments for length biased distributions. Probability in the Engineering and Informational Sciences, 13(2), 169-185.
- Patil, G. P. and Ord, J. (1976). On size-biased sampling and related form-invariant weighted distributions. SankhyÄ: The Indian Journal of Statistics, Series B, 38, 48-61.
- Patil, G. P. and Rao, C. R. (1978). Weighted distributions and size-biased sampling with applications to wildlife populations and human families. Biometrics, 34, 179-189.
- Rady, E.-H. A., Hassanein, W. and Elhaddad, T. (2016). The power Lomax distribution with an application to bladder cancer data. SpringerPlus, 5(1), 1838.
- Ranneby, B. (1984). The maximum spacing method. An estimation method related to the maximum likelihood method. Scandinavian Journal of Statistics, 93-112.
- Shaked, M. and Shanthikumar, J. (2007). Stochastic Orders. New York: Springer.
- Smith, R. L. and Naylor, J. (1987). A comparison of maximum likelihood and Bayesian estimators for the threeâ€parameter Weibull distribution. Journal of the Royal Statistical Society: Series C (Applied Statistics), 36(3), 358-369.
- Tahir, M. H., Cordeiro, G. M., Mansoor, M. and Zubair, M. (2015). The Weibull-Lomax distribution: properties and applications. Hacettepe Journal of Mathematics and Statistics, 44(2), 461-480.
- Tahir, M. H., Hussain, M. A., Cordeiro, G. M., Hamedani, G., Mansoor, M. and Zubair, M. (2016). The Gumbel-Lomax distribution: properties and applications. Journal of Statistical Theory and Applications, 15(1), 61-79.
- Zelen, M. and Feinleib, M. (1969). On the theory of screening for chronic diseases. Biometrika, 56(3), 601-614.