Main Article Content

Abstract

We introduce the Kumaraswamy alpha power-G (KAP-G) family which extends the alpha power family (Mahdavi and Kundu, 2017) and some other families. We consider the Weibull as baseline for the KAP family and generate Kumaraswamy alpha power Weibull distribution which has right-skewed, left-skewed, symmetrical, and reversed-J shaped densities, and decreasing, increasing, bathtub, upside-down bathtub, increasing-decreasing–increasing, J shaped and reversed-J shaped hazard rates. The proposed distribution can model non-monotone  and monotone failure rates which are quite common in engineering and reliability studies. Some basic mathematical properties of the new model are derived. The maximum likelihood estimation method is used to evaluate the parameters and the observed information matrix is determined. The performance and flexibility of the proposed family is illustrated via two real data applications.

Keywords

Alpha power family Kumaraswamy family Maximum likelihood estimation Weibull distribution

Article Details

How to Cite
Mead, M. E., Afify, A., & Butt, N. S. (2020). The Modified Kumaraswamy Weibull Distribution: Properties and Applications in Reliability and Engineering Sciences. Pakistan Journal of Statistics and Operation Research, 16(3), 433-446. https://doi.org/10.18187/pjsor.v16i3.3306

References

  1. Abouelmagd, T. H. M., Al-mualim, S., Elgarhy, M., Afify, A. Z. and Ahmad, M. (2017). Properties of the four-parameter Weibull distribution and its applications. Pak. J. Stat., 33, 449-466.
  2. Afify, A. Z., Alizadeh, M., Zayed, M., Ramires, T. G. and Louzada, F. (2018). The odd log-logistic exponentiated Weibull distribution: regression modeling, properties, and applications. Iranian Journal of Science and Technology, Transactions A: Science, 42, 2273-2288.
  3. Afify, A. Z., Cordeiro, G. M., Butt, N. S., Ortega, E. M. and Suzuki, A. K. (2017). A new lifetime model with variable shapes for the hazard rate. Brazilian Journal of Probability and Statistics, 31, 516-541.
  4. Afify, A. Z., Cordeiro, G. M., Yousof, H. M., Alzaatreh, A. and Nofal, Z. M. (2016a). The Kumaraswamy transmuted-G family of distributions: properties and applications. Journal of Data Science, 14, 245-270.
  5. Afify, A. Z., Nofal, Z. M. and Butt, N. S. (2014). Transmuted complementary Weibull geometric distribution. Pak. J. Stat. Oper. Res., 10, 435-454.
  6. Afify, A. Z., Yousof, H. M., Cordeiro, G. M., Ortega, E. M. and Nofal, Z. M. (2016b). The Weibull Fréchet distribution and its applications. Journal of Applied Statistics, 43, 2608-2626.
  7. Aldahlan, M. A. D., Khalil, M. G. and Afify, A. Z. (2018). A new generalized family of distributions for lifetime data. Journal of Modern Applied Statistical Methods. To appear.
  8. Alizadeh, M., Afify, A. Z., Eliwa, M. S. and Ali, S. (2020). The odd log-logistic Lindley-G family of distributions: properties, Bayesian and non-Bayesian estimation with applications. Computational Statistics, 35, 281-308.
  9. Cordeiro, G. M., Afify, A. Z., Yousof, H. M., Cakmakyapan, S. and Ozel, G. (2018). The Lindley Weibull distribution: properties and applications. Annals of the Brazilian Academy of Sciences, 90, 2579-2598.
  10. Cordeiro, G. M. and de Castro, M. (2011). A new family of generalized distributions, Journal of Statistical Computation and Simulation 81, 883–893.
  11. Cordeiro, G. M., Ortega, E. M. and Nadarajah, S. (2010). The Kumaraswamy Weibull distribution with application to failure data. Journal of the Franklin Institute, 347, 1399-1429.
  12. Cordeiro, G. M., Ortega, E. M. and Lemonte, A. J. (2014). The exponential-Weibull lifetime distribution, Journal of Statistical Computation and Simulation, 84, 2592-2606.
  13. Gupta, R. C., Gupta, P. L. and Gupta, R. D. (1998). Modeling failure time data by Lehmann alternatives. Commun. Stat. Theory Methods, 27, 887-904.
  14. Jalmar, M. F., Ortega, E. M. and Cordeiro, G. M. (2008). A generalized modified Weibull distribution for lifetime modeling. Computational Statistics and Data Analysis, 53, 450-462.
  15. Mahdavi, A. and Kundu, D. (2015). A New Method for Generating Distributions with an Application to Exponential Distribution. Commun. Stat. Theory Methods, 46, 6543-6557.
  16. Mead, M. E., Cordeiro, G. M., Afify, A. Z. and Al Mofleh, H. (2019). The alpha power transformation family: properties and applications. Pak. J. Stat. Oper. Res., 15, 525-545.
  17. Mudholkar, G. S. and Srivastava, D. K. (1993). Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE transactions on reliability, 42, 299-302.
  18. Nadarajah, S., Cordeiro, G. M. and Ortega, E. M. (2013). The exponentiated Weibull distribution: a survey. Statistical Papers, 54, 839-877.
  19. Nassar, M., Afify, A. Z., Dey, S. and Kumar, D. (2018). A new extension of Weibull distribution: Properties and different methods of estimation. Journal of Computational and Applied Mathematics, 336, 439-457.
  20. Nassar, M., Alzaatreh, A., Mead, M. and Abo-Kasem, O. (2017). Alpha power Weibull distribution: properties and applications. Commun. Stat. Theory Methods, 46, 10236-10252.
  21. Nassar, M., Kumar, D., Dey, S., Cordeiro, G. M. and Afify, A. Z. (2019). The Marshall–Olkin alpha power family of distributions with applications. Journal of Computational and Applied Mathematics, 351, 41-53.
  22. Smith, R. L. and Naylor, J. C. (1987). A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution. Appl. Statist., 36, 358–369.
  23. Xie, M., Lai, C. D. (1995). Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function. Reliability Engineering and System Safety, 52, 87-93.
  24. Xie, M., Tang, Y. and Goh, T. N. (2002). A modified Weibull extension with bathtub failure rate function. Reliability Engineering and System Safety, 76, 279-285.