Main Article Content

Abstract

In this paper, a general base of power transformation under the kernel method is suggested and applied in the line transect sampling to estimate abundance. The suggested estimator performs well at the boundary compared to the classical kernel estimator without using the shoulder condition assumption. The transformed estimator show smaller value of mean squared error and absolute bias from the efficiency results obtained using simulation.

Keywords

line transect power-transformation kernel estimator shoulder condition abundance bandwidth

Article Details

How to Cite
Albadareen, B. I., & Ismail, N. (2020). A General Base of Power Transformation to Improve the Boundary Effect in Kernel Density without Shoulder Condition. Pakistan Journal of Statistics and Operation Research, 16(2), 279-285. https://doi.org/10.18187/pjsor.v16i2.3164

References

  1. Al-Bassam, M., & Eidous, O. M. (2018). Combination of parametric and nonparametric estimators for population abundance using line transect sampling. Journal of Information and Optimization Sciences, 39(7), 1449–1462. https://doi.org/10.1080/02522667.2017.1367510
  2. Albadareen, B., & Ismail, N. (2017). Several new kernel estimators for population abundance. AIP Conference Proceedings, 1830(1), 80018. https://doi.org/10.1063/1.4981002
  3. Albadareen, B., & Ismail, N. (2018). Adaptive kernel function using line transect sampling. AIP Conference Proceedings, 1940, 020112. https://doi.org/10.1063/1.5028027
  4. Albadareen, B., & Ismail, N. (2019). An Adaptation of Kernel Density Estimation for Population Abundance using Line Transect Sampling When the Shoulder Condition is Violated. International Journal of Innovative Technology and Exploring Engineering, 9(2), 3494–3498. https://doi.org/10.35940/ijitee.B6582.129219
  5. Bauer, R. K., Fromentin, J.-M., Demarcq, H., Brisset, B., & Bonhommeau, S. (2015). Co-Occurrence and Habitat Use of Fin Whales, Striped Dolphins and Atlantic Bluefin Tuna in the Northwestern Mediterranean Sea. PLOS ONE, 10(10), e0139218. https://doi.org/10.1371/journal.pone.0139218
  6. Buckland, S. T. (1985). Perpendicular Distance Models for Line Transect Sampling. Biometrics, 41(1), 177. https://doi.org/10.2307/2530653
  7. Buckland, Stephen T, Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L., & Thomas, L. (2001). Introduction to distance sampling: estimating abundance of biological populations (1st ed.). London: Oxford University Press. Retrieved from https://global.oup.com/academic/product/introduction-to-distance-sampling-9780198509271?q=9780198509271&cc=my&lang=en
  8. Charpentier, A., & Flachaire, E. (2015). Log-Transform Kernel Density Estimation of Income Distribution. L’Actualité Économique, 91(1–2), 141–159. https://doi.org/10.7202/1036917ar
  9. Chen, S. X. (1996). A Kernel Estimate for the Density of a Biological Population by Using Line Transect Sampling. Applied Statistics, 45(2), 135. https://doi.org/10.2307/2986150
  10. Cheng, M. Y., Fan, J., & Marron, J. S. (1997). On automatic boundary corrections. Annals of Statistics, 25(4), 1691–1708. https://doi.org/10.1214/aos/1031594737
  11. Devroye, L., & Gyorfi, L. (1985). Nonparametric Density Estimation: The L 1 View. Journal of the Royal Statistical Society. Series A (General) (1st ed., Vol. 148). New York: John Wiley and Sons. https://doi.org/10.2307/2981908
  12. Eberhardt, L. L. (1968). A Preliminary Appraisal of Line Transects. The Journal of Wildlife Management, 32(1), 82. https://doi.org/10.2307/3798239
  13. Eidous, O. M. (2005). Frequency Histogram Model For Line Transect Data With And Without The Shoulder Condition. Journal of the Korean Statistical Society, 34(1), 49–60. Retrieved from http://www.koreascience.or.kr/article/JAKO200516610508354.page
  14. Eidous, O. M. (2011a). Additive histogram frequency estimator for wildlife abundance using line transect data without the shoulder condition. Metron, 69(2), 119–128. https://doi.org/10.1007/BF03263552
  15. Eidous, O. M. (2011b). Variable location kernel method using line transect sampling. Environmetrics, 22(3), 431–440. https://doi.org/10.1002/env.1082
  16. Eidous, O. M. (2012). A new kernel estimator for abundance using line transect sampling without the shoulder condition. Journal of the Korean Statistical Society, 41(2), 267–275. https://doi.org/10.1016/j.jkss.2011.09.004
  17. Eidous, O. M. (2015). Nonparametric Estimation of f(0) Applying Line Transect Data with and without the Shoulder Condition. Journal of Information and Optimization Sciences, 36(4), 301–315. https://doi.org/10.1080/02522667.2013.867726
  18. Eidous, O. M., & Al-Eibood, F. (2018). A bias-corrected histogram estimator for line transect sampling. Communications in Statistics - Theory and Methods, 47(15), 3675–3686. https://doi.org/10.1080/03610926.2017.1361987
  19. Gates, C. E., Marshall, W. H., & Olson, D. P. (1968). Line Transect Method of Estimating Grouse Population Densities. Biometrics, 24(1), 135. https://doi.org/10.2307/2528465
  20. Ghosh, S. (2018). Kernel Smoothing: Principles, Methods and Applications (1st ed.). New York: Chapman & Hall. https://doi.org/10.1002/9781118890370
  21. Jones, M. C., Linton, O., & Nielsen, J. P. (1995). A simple bias reduction method for density estimation. Biometrika, 82(2), 327–338. https://doi.org/10.1093/biomet/82.2.327
  22. Karunamuni, R. J., & Alberts, T. (2006). A locally adaptive transformation method of boundary correction in kernel density estimation. Journal of Statistical Planning and Inference, 136(9), 2936–2960. https://doi.org/10.1016/j.jspi.2004.12.014
  23. Koekemoer, G., & Swanepoel, J. W. H. (2008). Transformation Kernel density estimation with applications. Journal of Computational and Graphical Statistics, 17(3), 750–769. https://doi.org/10.1198/106186008X318585
  24. Mack, Y. P. (2002). Bias-corrected confidence intervals for wildlife abundance estimation. Communications in Statistics - Theory and Methods, 31(7), 1107–1122. https://doi.org/10.1081/STA-120004909
  25. Mack, Y. P., & Quang, P. X. (1998). Kernel Methods in Line and Point Transect Sampling. Biometrics, 54(2), 606. https://doi.org/10.2307/3109767
  26. Marron, J. S., & Ruppert, D. (1994). Transformations to Reduce Boundary Bias in Kernel Density Estimation. Journal of the Royal Statistical Society: Series B (Methodological), 56(4), 653–671. https://doi.org/10.1111/j.2517-6161.1994.tb02006.x
  27. Silverman, B. W. (1986). Density estimation: For statistics and data analysis. Density Estimation: For Statistics and Data Analysis (1st ed.). London: Chapman & Hall. https://doi.org/10.1201/9781315140919
  28. Wen, K., & Wu, X. (2015). An Improved Transformation-Based Kernel Estimator of Densities on the Unit Interval. Journal of the American Statistical Association, 110(510), 773–783. https://doi.org/10.1080/01621459.2014.969426
  29. Zhang, S. (2001). Generalized likelihood ratio test for the shoulder condition in line transect sampling. Communications in Statistics - Theory and Methods, 30(11), 2343–2354. https://doi.org/10.1081/STA-100107690