Main Article Content

Abstract

We study a new family of distributions defined by the minimum of the Poisson
random number of independent identically distributed random variables having a general Weibull-G distribution (see Bourguignon et al. (2014)). Some mathematical properties of the new family including ordinary and incomplete moments, quantile and generating functions, mean deviations, order statistics, reliability and entropies are derived. Maximum likelihood estimation of the model parameters is investigated. Three special models of the new family are discussed. We perform three applications to real data sets to show the potentiality of the
proposed family.

Keywords

Weibull-G family Entropy Generating Function Maximum Likelihood Order Statistic

Article Details

How to Cite
Yousof, H., Mansoor, M., Alizadeh, M., Afify, A., & Ghosh, I. (2020). The Weibull-G Poisson Family for Analyzing Lifetime Data. Pakistan Journal of Statistics and Operation Research, 16(1), 131-148. https://doi.org/10.18187/pjsor.v16i1.2840

References

  1. Aarset, M. V. (1987). How to identify bathtub hazard rate. IEEE Trans. Reliab., 36 106-108.
  2. Afify, A. Z., Alizadeh, M., Yousof, H. M., Aryal, G. and Ahmad, M. (2016a). The transmuted geometric-G family of distributions: theory and applications, Pakistan Journal of Statistics, 32(2), 139-160.
  3. Afify, A. Z., Cordeiro, G. M., Yousof, H. M. Alzaatreh, A., and Nofal, Z. M. (2016b). The Kumaraswamy transmuted-G family of distributions: properties and applications, Journal of Data Science, 14, 245-270.
  4. Alizadeh, M., Cordeiro, G. M. and Brito, E., (2015). The beta Marshall-Olkin family of distributions. Journal of Statistical Distributions and Applications, 2:4, 18-page.
  5. Alizadeh, M., Rasekhi, M., Yousof, H. M. and Hamedani G. G. (2018). The transmuted Weibull G family of distributions. Hacettepe Journal of Mathematics and Statistics, 47, 1-20.
  6. Altun, E., Yousof, H. M., Chakraborty, S. and Handique, L. (2018a). Zografos-Balakrishnan Burr XII distribution: regression modeling and applications. International Journal of Mathematics and Statistics, 19(3), 46-70.
  7. Altun, E., Yousof, H. M. and Hamedani, G. G. (2018b). A new log-location regression model with influence diagnostics and residual analysis. Facta Universitatis, Series: Mathematics and Informatics, 33(3), 417-449.
  8. Aryal, G. R. and Yousof, H. M. (2017). The exponentiated generalized-G Poisson family of distributions. Economic Quality Control, 32, 1-17.
  9. Alizadeh, M., Ghosh, I., Yousof, H. M., Rasekhi, M. and Hamedani G. G. (2017). The generalized odd generalized exponential family of distributions: properties, characterizations and applications. Journal of Data Science, 15, 443-466.
  10. Basu, B., Tiwari, D., Kundu, D., and Prasad, R. (2009). Is Weibull distribution the most appropriate statistical strength distribution for brittle materials? Ceramics International, 35, 237-246.
  11. Barlow, R. E. and Campo, R. A. (1975). Total time on test processes and applications to failure data analysis. In: R.E. Barlow, J.B. Fussel, and N.D. Singpurwalla (eds.), Reliability and Fault Tree Analysis, Society for Industrial and Applied Mathematics, Philadelphia, 451-481.
  12. Bourguignon, M., Silva, R. B. and Cordeiro, G. M. (2014). The Weibull-G family of probability distributions. J. Data Sci., 12, 53-68.
  13. Brito, E., Cordeiro, G. M., Yousof, H. M., Alizadeh, M. and Silva, G. O. (2017). Topp-Leone Odd Log-Logistic Family of Distributions, Journal of Statistical Computation and Simulation, 87(15), 3040–3058.
  14. Cordeiro, G. M., Afify, A. Z., Ortega, E. M. M., Suzuki, A. K. and Mead, M. E. (2019). The odd Lomax generator of distributions: properties, estimation and applications. Journal of Computational and Applied Mathematics, 347, 222-237.
  15. Cordeiro, G. M., Ortega, E. M. M. and da Cunha, D. C. C. (2013). The exponentiated generalized class of distributions. J. Data Sci., 11, 1-27.
  16. Cordeiro, G. M. and de Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation, 81, 883-898.
  17. Cordeiro, G. M., Afify, A. Z., Yousof, H. M., Pescim, R. R. and Aryal, G. R. (2017). The exponentiated Weibull-H family of distributions: theory and applications. Mediterranean Journal of Mathematics, 14, 1-22.
  18. Cordeiro, G. M., Yousof, H. M., Ramires, T. G. and Ortega, E. M. M. (2018). The Burr XII system of densities: properties, regression model and applications. Journal of Statistical Computation and Simulation, 88(3), 432-456.
  19. Cooray, K. and Ananda, M. M. A. (2008). A generalization of the half-normal distribution with applications to lifetime data. Communications in Statistics- Theory Methods, 37, 1323-1337.
  20. Crowder, M. J., Kimber, A. C., Smith, R. L. and Sweeting, T. J. (1991). The statistical analysis of reliability data. Chapman and Hall, London.
  21. Drobinski, P., Corentin Coulais, C. and Jourdier, B. (2015). Surface Wind-Speed Statistics Modeling: Alternatives to the Weibull Distribution and Performance Evaluation. Boundary-Layer Meteorology, 1, 97-123.
  22. Eugene, N., Lee, C. and Famoye, F. (2002). Beta-normal distribution and its applications. Communications in Statistics-Theory and Methods, 31, 497-512.
  23. Gad, A. M., Hamedani, G. G., Salehabadi, S. M. and Yousof, H. M. (2019). The Burr XII-Burr XII distribution: mathematical properties and characterizations. Pakistan Journal of Statistics, 35(3), 229-248.
  24. Hamedani G. G., Altun, E, Korkmaz, M. C., Yousof, H. M. and Butt, N. S. (2018). A new extended G family of continuous distributions with mathematical properties, characterizations and regression modeling. Pak. J. Stat. Oper. Res., 14(3), 737-758.
  25. Hamedani G. G. Rasekhi, M., Najib, S. M., Yousof, H. M. and Alizadeh, M., (2019). Type II general exponential class of distributions. Pak. J. Stat. Oper. Res., XV (2), 503-523.
  26. Hamedani G. G. Yousof, H. M., Rasekhi, M., Alizadeh, M., Najibi, S. M. (2017). Type I general exponential class of distributions. Pak. J. Stat. Oper. Res., XIV (1), 39-55.
  27. Ibrahim, M. (2020a). The generalized odd log-logistic Nadarajah Haghighi distribution: statistical properties and different methods of estimation. Journal of Applied Probability and Statistics, forthcoming.
  28. Ibrahim, M. (2020b). The compound Poisson Rayleigh Burr XII distribution: properties and applications. Journal of Applied Probability and Statistics, forthcoming.
  29. Ibrahim, M., Altun, E. and Yousof, H. M. (2020). A new distribution for modeling lifetime data with different methods of estimation and censored regression modeling. Statistics, Optimization and Information Computing, forthcoming.
  30. Ibrahim, M., Yadav, A. S. Yousof, H. M., Goual, H. and Hamedani, G. G. (2019). A new extension of Lindley distribution: modified validation test, characterizations and different methods of estimation, Communications for Statistical Applications and Methods, 26(5), 473–495.
  31. Korkmaz, M. C., Alizadeh, M., Yousof, H. M. and Butt, N. S. (2018a). The generalized odd Weibull generated family of distributions: statistical properties and applications. Pak. J. Stat. Oper. Res., 14(3), 541-556.
  32. Korkmaz, M. C., Altun, E., Yousof, H. M. and Hamedani G. G. (2019). The Odd Power Lindley Generator of Probability Distributions: Properties, Characterizations and Regression Modeling, International Journal of Statistics and Probability, 8(2), 70-89.
  33. Korkmaz, M. C., Yousof, H. M., Hamedani G. G. and Ali, M. M. (2018b). The Marshall–Olkin generalized-G Poisson family of distributions, Pakistan Journal of Statistics, 34(3), 251-267.
  34. Mansour, M., Yousof, H. M., Shehata, W. A. M. and Ibrahim, M. (2020). A new two parameter Burr XII distribution: properties,copula, different estimation methods and modeling acute bone cancer data, Journal of Nonlinear Science and Applications, forthcoming.
  35. Nascimento, A. D. C., Silva, K. F., Cordeiro, G. M., Alizadeh, M. and Yousof, H. M. (2019). The odd Nadarajah-Haghighi family of distributions: properties and applications. Studia Scientiarum Mathematicarum Hungarica, 56(2), 1-26.
  36. Nofal, Z. M., Afify, A. Z., Yousof, H. M. and Cordeiro, G. M. (2017). The generalized transmuted-G family of distributions. Communications in Statistics-Theory and Methods, 46, 4119-4136.
  37. Pak-poy, P. G. (1964). The use and limitation of the Poisson distribution in road traffic. Australian Road Research Board (ARRB) Conference, 2nd, Melbourne.
  38. Sen, S., Korkmaz, M. C. and Yousof, H. M. (2018). The quasi xgamma-Poisson distribution. Theory and Applications of Statistics and Information, 18(3), 65-76.
  39. Smith, R. L. and Naylor, J. C. (1987). A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution. Appl. Statist., 36, 358-369.
  40. Yousof, H. M., Afify, A. Z., Alizadeh, M., Butt, N. S., Hamedani, G. G. and Ali, M. M. (2015). The transmuted exponentiated generalized-G family of distributions. Pak.j.stat.oper.res., 11, 441-464.
  41. Yousof, H. M., Afify, A. Z., Alizadeh, M., Hamedani G. G., Jahanshahi, S. M. A. and Ghosh, I. (2018a). The generalized transmuted Poisson-G family of Distributions. Pak. J. Stat. Oper. Res., 14 (4), 759-779.
  42. Yousof, H. M., Afify, A. Z., Alizadeh, M., Nadarajah, S., Aryal, G. R. and Hamedani, G. G. (2018b). The Marshall-Olkin generalized-G family of distributions with Applications, STATISTICA, 78(3), 273- 295.
  43. Yousof, H. M., Alizadeh, M., Jahanshahi and, S. M. A., Ramires, T. G., Ghosh, I. and Hamedani G. G. (2017a). The transmuted Topp-Leone G family of distributions: theory, characterizations and applications, Journal of Data Science. 15, 723-740.
  44. Yousof, H. M., Altun, E., Ramires, T. G., Alizadeh, M. and Rasekhi, M. (2018c). A new family of distributions with properties, regression models and applications, Journal of Statistics and Management Systems, 21(1), 163-188.
  45. Yousof, H. M., Butt, N. S., Alotaibi, R., Rezk, H. R., Alomani, G. A. and Ibrahim, M. (2019). A new compound Fréchet distribution for modeling breaking stress and strengths data. Pak. J. Stat. Oper. Res., 15 (4), 1017-1035.
  46. Yousof, H. M., Rasekhi, M., Afify, A. Z., Alizadeh, M., Ghosh, I. and Hamedani G. G. (2017b). The beta Weibull-G family of distributions: theory, characterizations and applications, Pakistan Journal of Statistics, 33, 95-116.
  47. Yousof, H. M., Majumder, M., Jahanshahi, S. M. A., Ali, M. M. and Hamedani G. G. (2018d). A new Weibull class of distributions: theory, characterizations and applications, Journal of Statistical Research of Iran, 15, 45–83.

Most read articles by the same author(s)