Main Article Content

Abstract

The main goal of this article is to introduce a new extension of the continuous Lomax distribution with a strong physical motivation. Some of its statistical properties such as moments, incomplete moments, moment generating function, quantile function, random number generation, quantile spread ordering and moment of the reversed residual life are derived. Two applications are provided to illustrate the importance and flexibility of the new model.

Keywords

Maximum Likelihood Estimation Quantile Function Generating Function Moments Zero Truncated Poisson.

Article Details

How to Cite
Hamed, M. S. (2020). Extended Poisson Lomax Distribution. Pakistan Journal of Statistics and Operation Research, 16(3), 461-470. https://doi.org/10.18187/pjsor.v16i3.2837

References

  1. Abouelmagd, T. H. M. (2018). A new flexible version of the Lomax distribution with applications. International Journal of Statistics and Probability, 7(5), 120-132.
  2. Altun, E., Yousof, H. M., Chakraborty, S. and Handique, L. (2018). Zografos-Balakrishnan Burr XII distribution: regression modeling and applications. International Journal of Mathematics and Statistics, 19(3), 46-70.
  3. Aryal, G. R. and Yousof, H. M. (2017). The exponentiated generalized-G Poisson family of distributions. Stochastics and Quality Control, 32(1), 7-23.
  4. Brito, E., Cordeiro, G. M., Yousof, H. M., Alizadeh, M. and Silva, G. O. (2017). Topp-Leone Odd Log-Logistic Family of Distributions, Journal of Statistical Computation and Simulation, 87(15), 3040–3058.
  5. Cordeiro, G. M., Ortega, E. M. and Popovic, B. V. (2015). The gamma-Lomax distribution. Journal of Statistical computation and Simulation, 85(2), 305-319.
  6. Cordeiro, G. M., Yousof, H. M., Ramires, T. G. and Ortega, E. M. M. (2018). The Burr XII system of densities: properties, regression model and applications. Journal of Statistical Computation and Simulation, 88(3), 432-456.
  7. Elbiely, M. M. and Yousof, H. M. (2018). A New Extension of the Lomax Distribution and its Applications, Journal of Statistics and Applications, 2(1), 18-34.
  8. Elsayed, H. A. and Yousof, H. M. (2019). A new Lomax distribution for modeling survival times and taxes revenue data sets. Journal of Statistics and Applications, forthcoming.‏
  9. Gad, A. M., Hamedani, G. G., Salehabadi, S. M. and Yousof, H. M. (2019). The Burr XII-Burr XII distribution: mathematical properties and characterizations. Pakistan Journal of Statistics, 35(3), 229-248.
  10. Goual, H. and Yousof, H. M. (2019). Validation of Burr XII inverse Rayleigh model via a modified chi-squared goodness-of-fit test. Journal of Applied Statistics, 47(1), 1-32.
  11. Gupta, R. C., Gupta, P. L. and Gupta, R. D. (1998). Modeling failure time data by Lehman alternatives. Communications in Statistics-Theory and methods, 27(4), 887-904.
  12. Ibrahim, M. and Yousof, H. M. (2020). A new generalized Lomax model: statistical properties and applications. Journal of Data Science, 18(1), 190-217.
  13. Korkmaz, M. C., Altun, E., Yousof, H. M. and Hamedani G. G. (2019). The odd power Lindley generator of probability distributions: properties, characterizations and regression modeling, International Journal of Statistics and Probability, 8(2), 70-89.
  14. Korkmaz, M. C., Yousof, H. M., Hamedani G. G. and Ali, M. M. (2018a). The Marshall–Olkin generalized G Poisson family of distributions, Pakistan Journal of Statistics, 34(3), 251-267.
  15. Korkmaz, M. C. Yousof, H. M., Rasekhi, M. and Hamedani G. G. (2018b). Bayesian analysis, classical inference and characterizations for the odd Lindley Burr XII model. Mathematics and Computers in Simulation. Journal of Data Science, 16(2), 327-354.
  16. Lemonte, A. J. and Cordeiro, G. M. (2013). An extended Lomax distribution. Statistics, 47(4), 800-816.
  17. Lomax, K.S. (1954). Business failures: Another example of the analysis of failure data, Journal of the American Statistical Association 49, 847-852.
  18. Mansour, M., Yousof, H. M., Shehata, W. A. and Ibrahim, M. (2020). A new two parameter Burr XII distribution: properties, copula, different estimation methods and modeling acute bone cancer data. Journal of Nonlinear Science and Applications, forthcoming.‏
  19. Murthy, D.N.P. Xie, M. and Jiang, R. (2004). Weibull Models, Wiley.
  20. Ramos, M. W. A. Marinho, P. R. D. Cordeiro, G. M. da Silva, R. V. and Hamedani, G. G. (2015). The Kumaraswamy-G Poisson family of distributions, J. Stat. Theory Appl. 14, 222-239.
  21. Nascimento, A. D., Silva, K. F., Cordeiro, G. M., Alizadeh, M., Yousof, H. M. and Hamedani, G. G. (2019). The odd Nadarajah-Haghighi family of distributions: properties and applications. Studia Scientiarum Mathematicarum Hungarica, 56(2), 185-210.‏
  22. Sen, S., Korkmaz, M. C. and Yousof, H. M. (2018). The quasi xgamma-Poisson distribution. Theory and Applications of Statistics and Information, 18(3), 65-76.‏
  23. Yadav, A. S., Goual, H., Alotaibi, R. M., Ali, M. M. and Yousof, H. M. (2020). Validation of the Topp-Leone-Lomax model via a modified Nikulin-Rao-Robson goodness-of-fit test with different methods of estimation. Symmetry, 12(1), 57.‏
  24. Yousof, H. M., Afify, A. Z., Hamedani, G. G. and Aryal, G. (2017). The Burr X generator of distributions for lifetime data. Journal of Statistical Theory and Applications, 16, 288-305.
  25. Yousof, H. M., Altun, E., Rasekhi, M., Alizadeh, M., Hamedani, G. G. and Ali, M. M. (2019a). A new lifetime model with regression models, characterizations and applications. Communications in Statistics-Simulation and Computation, 48(1), 264-286.‏
  26. Yousof, H. M., Ahsanullah, M. and Khalil, M. G. (2019b). A New Zero-Truncated Version of the Poisson Burr XII Distribution: Characterizations and Properties. Journal of Statistical Theory and Applications, 18(1), 1-11.
  27. Yousof, H. M., Majumder, M., Jahanshahi, S. M. A., Ali, M. M. and Hamedani G. G. (2018). A new Weibull class of distributions: theory, characterizations and applications, Journal of Statistical Research of Iran, 15, 45–83.
  28. Yousof, H. M., Mansoor, M., Alizadeh, M., Afify, A. and Ghosh, I. (2020). The Weibull-G Poisson family for analyzing lifetime data. Pakistan Journal of Statistics and Operation Research, 131-148.‏