Main Article Content

Abstract

In this paper, the shape parameters, reliability and hazard rate functions of the inverted Kumaraswamy distribution are estimated using maximum likelihood and Bayesian methods based on dual generalized order statistics. The Bayes estimators are derived under the squared error loss function as a symmetric loss function and the linear-exponential loss function as an asymmetric loss function based on dual generalized order statistics. Confidence and credible intervals for the parameters, reliability and hazard rate functions are obtained. All results are specialized to lower record values, also a numerical study is presented to illustrate the theoretical procedures.

Keywords

Inverted Kumaraswamy distribution Maximum likelihood estimation Bayesian estimation Lower records Monte Carlo simulation.

Article Details

How to Cite
EL-Helbawy, A. A.-A., AL-Dayian, G. R., & Abd AL-Fattah, A. M. (2020). Statistical Inference for Inverted Kumaraswamy Distribution Based on Dual Generalized Order Statistics. Pakistan Journal of Statistics and Operation Research, 16(4), 649-660. https://doi.org/10.18187/pjsor.v16i4.2774

References

  1. Abd AL-Fattah, A. M., EL-Helbawy A. A. and AL-Dayian, G. R. (2017). Inverted Kumaraswamy distribution: properties and estimation. Pakistan Journal of Statistics, 33(1), 37-61.
  2. Ahsanullah, M. (2004). A characterization of the uniform distribution by dual generalized order statistics, Communications in Statistics-Theory and Methods, 33(12), 2921-2928.
  3. AL-Hussaini, E. K. and Jaheen, Z. F. (1992). Bayesian estimation of the parameters, reliability and failure rate functions of the Burr type XII failure model. Journal of Statistical Computation and Simulation, 41, 31-40
  4. Athar, H. and Faizan, M. (2011). Moments of lower generalized order statistics from power function distribution and its characterization. International Journal of Statistical Sciences, 11, 125-134.
  5. Barreto-Souza, W. and Lemonte, A. J. (2013). Bivariate Kumaraswamy distribution: properties and a new method to generate bivariate classes. Statistics 47 (6), 1321-1342.
  6. Bhaumik, D. K., Kapur, K. and Gibbons, R. D. (2009). Testing parameters of a gamma distribution for small samples. Technometrics, 51, 326-334.
  7. Burkschat, M., Cramer, E. and Kamps, U. (2003). Dual generalized order statistics. International Journal of Statistics, LX1 (1), 13-26.
  8. Cordeiro, G. M, Ortega, E. M. M. and Nadarajah, S. (2010). The Kumaraswamy Weibull distribution with application to failure data. Journal of the Franklin Institute, 347 (8), 1399-1429.
  9. Fatima. K., Jan. U and Ahmad. S. P. (2018). Statistical properties and applications of the exponentiated inverted Kumaraswamy distribution. Journal of Reliability and Statistical Studies, 11(1), 93-102.
  10. Hinkley, D. (1977). On quick choice of power transformations, Journal of the Royal Statistical Society Series C (Applied Statistics), 26 (1), 67-69.
  11. Jaheen, Z. F. and Al Harbi, M. M. (2011). Bayesian estimation based on dual generalized order statistics from the exponentiated Weibull model. Journal of Statistical Theory and Applications, 10 (4), 591-602.
  12. Jamal, F., Nasir, M. A., Ozel. G. and Elgarhy, M. (2019). Generalized inverted Kumaraswamy generated family of distributions: theory and applications. Journal of Applied Statistics, 46(16):2927-2944
  13. Kamps, U. (1995). A concept of generalized order statistics. Journal of Statistical Planning and Inference, 48, 1-23.
  14. Khaledi, B. E. and Kochar, S. (2005). Dependence orderings for generalized order statistics. Statistics and Probability Letters, 73(4), 357-367.
  15. Khan, M. J. S. and Khan, M. L. (2012). Conditional expectation of function of dual generalized order statistics an alternative approach. ProbStat Forum, 5, 80-85.
  16. Khan, R. U. and Kumar, D. (2010). On moments of lower generalized order statistics from exponentiated Pareto distribution and its characterization. Applied Mathematical Sciences, 4(55), 2711-2722.
  17. Kim, C., Song, S. and W. Kim (2016). Statistical inference for Burr Type III distribution on dual generalized order statistics and real data analysis. Applied Mathematical Sciences, 10 (14), 683-695.
  18. Kumaraswamy, P. (1980). A generalized probability density function for double bounded random processes. Journal of Hydrology, 46, 79-88.
  19. Kumari, T. and Pathak, A. (2014). Conditional expectation of certain distributions of dual generalized order statistics. International Journal of Mathematical Analysis, 8 (3), 141-148.
  20. Mahdizadeh, M. (2016). Reconstruction of the missing order statistics in the Topp-Leone distribution. International Journal of Statistics & Economics 17 (3), 12-19.
  21. Mahmoud, M. A. W., Abdel-Aty, A., Mohamed, N. M. and Hamedani, G. G. (2014). Recurrence relations for moments of dual generalized order statistics from Weibull Gamma distribution and its characterizations. Journal of Statistics Applications and Probability, 3 (2), 189-199.
  22. MirMostafaee, S. M. T. K, Mahdizadeh, M. and Nadarajah, S. (2015). The beta Lindley distribution. Journal of Data Science 13 (3), 603-626.
  23. MirMostafaee, S. M. T. K, Mahdizadeh, M. and Aminzadeh, M. (2016). Bayesian inference for the Topp-Leone distribution based on lower k-record values. Japan Journal of Industrial and Applied Mathematics 33 (3), 637-669.
  24. MirMostafaee, S. M. T. K, Mahdizadeh, M. and Lemonte, A. J. (2017). The Marshall-Olkin extended generalized Rayleigh distribution: Properties and applications. Communications in Statistics: Theory and Methods 46 (2), 653-671.
  25. Mohie El-Din, M and Abu-Moussa, M. (2018). On Estimation and prediction for the inverted Kumaraswamy distribution based on general progressive censored samples. Pakistan Journal of Statistics and Operation Research, XIV (3), 717-736.
  26. Muhammed, H. Z. (2020). On a bivariate generalized inverted Kumaraswamy distribution. Physica A: Statistical Mechanics and its Applications, Elsevier, 553(C).
  27. Murthy, D. N. P., Xie, M. and Jiang, R. (2004). Weibull Models. Wiley series in probability and statistics, John Wiley and Sons, New York.
  28. Tavangar, M. (2011). Power function distribution characterized by dual generalized order statistics, Journal of Iranian Statistical Scoiety, 10(1), 13-27.
  29. Usman, R. M. and ul Haq, M. A. (2020). The Marshall-Olkin extended inverted Kumaraswamy distribution: Theory and applications. Journal of King Saud University – Science, 32, 356-365.
  30. ZeinEldin, R. A., Chesneau, C., Jamal, F. and Elgarhy, M. (2019). Statistical Properties and Different Methods of Estimation for Type I Half Logistic Inverted Kumaraswamy Distribution. Mathematics, 7(10), 1002.