Main Article Content

Abstract

This work proposes an inverse odd Weibull (IOW) family of distributions for a lifetime distributions. Some mathematical properties of this family of distribution were derived. Survival, hazard, quantiles, reversed hazard, cumulative, odd functions, kurtosis, skewness, order statistics and entropies of this new family of distribution were examined. The parameters of the family of distributions were obtained by maximum likelihood. The behavior of the estimators were studied through simulation. The flexibility and importance of the distribution by means of real data set applications were emphasized.

Keywords

Survival function Quantiles Function Lifetime Distribution Maximum likelihood Inverse odd

Article Details

Author Biographies

Joseph Thomas Eghwerido, FEDERAL UNIVERSITY OF PETROLEUM RESOURCES, EFFURUN

Department of Mathematics and Comp. Sc. and L11

John David Ikwuoche, Federal University Wukari, Taraba, Nigeria.

Department of Mathematics and Statistics and L 11

Obinna Damian Adubisi, Federal University Wukari, Taraba, Nigeria

Department of Mathematics and Statistics and L 11
How to Cite
Eghwerido, J. T., Ikwuoche, J. D., & Adubisi, O. D. (2020). Inverse Odd Weibull Generated Family of Distribution. Pakistan Journal of Statistics and Operation Research, 16(3), 617-633. https://doi.org/10.18187/pjsor.v16i3.2760

References

  1. Afify, A., Nofal, Z., Yousof, H., El Gebaly, Y. & Butt, N. (2013).The transmuted Weibull Lomax distribution. Properties and Application. Pakistan Journal of Statistics and Operation Research,11, 135–152.
  2. Afify A. Z., Alizadeh, M., Yousof, H. M., Aryal, G. & Ahmad, M. (2016). The transmuted geometric-G family of distributions: theory and applications. Pakistan Journal of Statistics, 32, 139–160.
  3. Afify, A.Z., Altun, E., Yousof, H.M., Alizadeh, M., Ozel, G. & Hamedani G.G. (2017). The Odd Exponentiated Half-Logistic-G Family: Properties, Characterizations and Applications. Chilean Journal of Statistics, 8(2), 65–91.
  4. Agu, F. I. & Onwukwe, C. E. (2019a). Modified Laplace distribution, its properties and applications. AJPAS, 4(1), 1–14. DOI: https://doi.org/10.9734/ajpas/2019/v4i130104
  5. Al-Mofleh, H. (2018). On Generating a New Family of Distributions Using the Tangent Function. Pakistan Journal of Statistics and Operation Research, 3, 471–499. DOI: https://doi.org/10.18187/pjsor.v14i3.1472
  6. Alzaatreh, A., Lee, C. & Famoye, F. (2013). A new method for generating families of continuous distributions. Metron, 71, 63–79. DOI: https://doi.org/10.1007/s40300-013-0007-y
  7. Alzaatreh, A., Famoye, F. & Lee, C. (2013b). Weibull-Pareto distribution and its applications, Communications in Statistics Theory and Methods, 42, 1673–1691. DOI: https://doi.org/10.1080/03610926.2011.599002
  8. Alzaatreh, A., Mansoor, M., Tahir, M. H., Zubair, M., & Ali, S (2016), The Gamma Half-Cauchy Distribution: Properties And Applications. Hacettepe Journal of Mathematics and Statistics, 45 (4), 1143–1159.
  9. Anake, T. A., Oguntunde, P. E.,& Odetunmibi, O. A. (2015). On a Fractional Beta-Exponential Distribution. International Journal of Mathematics and Computations, 26(1), 26–34.
  10. Aryal, G. R. &Yousof, H. M. (2017). The exponentiated generalized-G Poisson family of distributions. Economic Quality Control, 32(1), 1–17.
  11. Bourguinon, M. Silva, B. R and Cordeiro, G.M. (2014) The Weibull-G family of probability distributions. Journal of Data Science, (12), 53–68.
  12. Cooray, K. (2006). Generalization of the Weibull distribution: the odd Weibull family. Statistical Modelling, 6(3),265–277. DOI: https://doi.org/10.1191/1471082X06st116oa
  13. Cooray, K. (2006). A study of the moments and likelihood estimators of the odd Weibull distribution. Statistical Methodology,DOI:10.1016/j.stamet.2015.03.003. DOI: https://doi.org/10.1016/j.stamet.2015.03.003
  14. Cordeiro, G. M., Afify, A. Z., Yousof, H. M., Pescim, R. R. & Aryal, G. R. (2017a). The exponentiated Weibull-H family of distributions: Theory and Applications. Mediterranean Journal of Mathematics,14, 1-22. DOI: https://doi.org/10.1007/s00009-017-0955-1
  15. Cordeiro, G. M., Yousof, H. M., Ramires, T. G. & Ortega, E. M. M. (2017b). The Burr XII system of densities: properties, regression model and applications. Journal of Statistical Computation and Simulation, 88(3), 432-456. DOI: https://doi.org/10.1080/00949655.2017.1392524
  16. Cordeiro, G.M., Hashimoto, E.M. & Ortega, E.M.M. (2014). The McDonald Weibull model. Statistics: A Journal of Theoretical and Applied Statistics, 48, 256–278. DOI: https://doi.org/10.1080/02331888.2012.748769
  17. Cordeiro, G.M., Ortega, E.M.M. and Nadarajah, S. (2010). The Kumaraswamy Weibull distribution with application to failure data. Journal of the Franklin Institute, 347, 1317–1336. DOI: https://doi.org/10.1016/j.jfranklin.2010.06.010
  18. Cordeiro, G. M., Ortega, E. M. & da Cunha, D. C. C. (2013). The exponentiated generalized class of distributions. Journal of Data Science, 11, 1–27.
  19. Efe-Eyefia, E. Eghwerido, J. T. and Zelibe, S. C. (2020). Theoretical Analysis of the Weibull Alpha power inverted exponential distribution: properties and applications, Gazi University Journal of Science, 33(1), 265-277. DOI: https://doi.org/10.35378/gujs.537832
  20. Eghwerido, J. T., Zelibe, S. C.,Ekuma-Okereke, E. & Efe-Eyefia, E. (2019). On the extented new generalized exponential distribution: properties and applications, FUPRE Journal of Scientific and Industrial Research, 3(1), 112 - 122.
  21. Eghwerido, J. T., Oguntunde, P. E & Agu, F. I. (2020a). The alpha power Marshall-Olkin-G distribution: properties, and applications. Sankhya A - The Indian Journal of Statistics, Article in the press.
  22. Eghwerido, J. T., Zelibe, S. C. & Efe-Eyefia, E. (2020b). The transmuted alpha power-G family of distributions, Journal of Statistics and Management Systems, Article in the press.
  23. Eghwerido, J. T., Zelibe, S. C. & Efe-Eyefia, E. (2020c). Gompertz-Alpha power inverted exponential distribution: properties and applications, Thailand Statistician, 18(3), 319 - 332.
  24. Eghwerido, J. T., Nzei, L., C. & Agu, F. I. (2020d). The alpha power Gompertz distribution: characterization, properties, and applications. Sankhya A - The Indian Journal of Statistics, /doi:10.1007/s13171-020-00198-0. DOI: https://doi.org/10.1007/s13171-020-00198-0
  25. Eghwerido, J. T., Efe-Eyefia, E. & Otakore, O . (2020e). Performance Rating of the Zubair Gompertz distribution: properties and applications, Journal of Statistics and Management Systems, Article in the press.
  26. Eghwerido, J.T., Nzei, L. C., Ikwuoche, D. J. & Adubisi, O. D. (2020f). The Gompertz extended generalized exponential distribution: properties and applications, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 69(1), 739–753. DOI: 10.31801/cfsuasmas.602930. DOI: https://doi.org/10.31801/cfsuasmas.602930
  27. Eliwa,M. S. & El-Morshedy, M. (2019). The odd flexible Weibull-H family of distributions: properies and estimation with applications to complete and upper record data, Filomat., 33(9), 2635–2652.
  28. Eliwa,M. S. and El-Morshedy, M. (2020). Bivariate odd Weibull-G family of distributions: properies, Bayesian and non-Bayesian estimation with bootsrap confidence intervals and application, Journal of Taibah University for Science, 14(1), 331–345. DOI: https://doi.org/10.1080/16583655.2020.1741919
  29. Gupta, R. C, Gupta, P. I. & Gupta, R. D. (1998). Modeling failure time data by Lehmann alternatives. Communications in Statistics-Theory and Methods, 27, 887–904. DOI: https://doi.org/10.1080/03610929808832134
  30. Gupta, R. D., & Kundu, D. (1999). Generalized exponential distribution. Australian and New Zealand Journal of Statistics, 41 (2), 173–188. DOI: https://doi.org/10.1111/1467-842X.00072
  31. Harter, H. L., & Moore, A. H. (1965). Maximum-likelihood estimation of the parameters of gamma and Weibull populations from complete and from censored samples. Technometrics, 7(4), 639–643. DOI: https://doi.org/10.1080/00401706.1965.10490304
  32. Hassan, A. S., & Al-Thobety, A. K. (2012). Optimal design of failure step stress partially accelerated life tests with type II inverted Weibull data. International Journal of Engineering Research and Applications, 2(3), 3242–3253.
  33. Hassan, A. S., Assar, M. S., & Zaky, A. N. (2015). Constant-stress Partially Accelerated life tests with type II Inverted Weibull Distribution with Multiple Censored data. International Journal of Advanced Statistics and Probability, 3(1), 72–82. DOI: https://doi.org/10.14419/ijasp.v3i1.4418
  34. Hassan, A. S., Elsherpieny, E. A., & Mohamed, R. E., (2018). Odds Generalized Exponential-Inverse Weibull Distribution: Properties and Estimation, Pakistan Journal of Statistics and Operation Research, 1, 1–22. DOI: https://doi.org/10.18187/pjsor.v14i1.2086
  35. Jiang, H., Xie, M., & Tang, L. C. (2008). On the odd Weibull distribution. J. Risk Reliab. 222(4), 583–594. DOI: https://doi.org/10.1243/1748006XJRR168
  36. Kenney, J. F., (1939) Mathematics of Statistics Part 1., Chapman and Hall, London.
  37. Khan, M. N. (2015). The modified beta Weibul distribution with applications. Hacettepe Journal of Mathematics and Statistics, 44, 1553–1568.
  38. Korkmaz, M., Alizadeh M., Yousof, H. M., & Butt, N. S. (2018). The Generalized Odd Weibull Generated Family of Distributions: Statistical Properties and Applications. Pakistan Journal of Statistics and Operation Research, 3, 541–556. DOI: https://doi.org/10.18187/pjsor.v14i3.2598
  39. Lee, C., Famoye, F., & Olumolade, O. (2007). Beta-Weibull distribution: some properties and applications to censored data. Journal of Modern Applied Statistical Methods, 6, 173–186. DOI: https://doi.org/10.22237/jmasm/1177992960
  40. Manal, M.N. & Fathy, H.E. (2003). On the Exponentiated Weibull Distribution. Communications in Statistics Theory and Methods, 32, 1317–1336.
  41. Merovci, F., Khaleel, M. A., Ibrahim, N. A., & Shitan, M. (2016) The beta type X distribution: properties with application, Springer-Plus, (5), 697. DOI: https://doi.org/10.1186/s40064-016-2271-9
  42. Moors, J. J. A., (1988). A quantile Alternative for Kurtosis, The Statistician, 37(1), 25–32.
  43. Mudholkar, G. S. & Srivastava, D. K. (1993). Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Transactions on Reliability42 (2), 299-302. DOI: https://doi.org/10.1109/24.229504
  44. Nichols, M.D. & Padgett, W.J. (2006).A Bootstrap control chart for Weibull percentiles. Quality and Reliability Engineering International, 22, 141–151. DOI: https://doi.org/10.1002/qre.691
  45. Nofal, Z. M., Afify, A. Z., Yousof, H. M. and Cordeiro, G. M. (2017). The generalized transmuted-G family of distributions. Communications in Statistics Theory and Methods, 46, 4119–4136. DOI: https://doi.org/10.1080/03610926.2015.1078478
  46. Nzei, L. C., Eghwerido, J. T. & Ekhosuehi, N. (2020). Topp-Leone Gompertz Distribution: Properties and Application, Journal of Data Science, Article in the press.
  47. Oguntunde, P. E., Odetunmibi, O. A., & Adejumo, A. O. (2013). On Sum of Exponentialially Distributed Random Variables: A Convolution Approach. European Journal of Statistics and Probability, 1(2). 1–8.
  48. Oguntunde, P.E., Babatunde, O.S., & Ogunmola, A.O., (2014a). Theoretical Analysis of the Kumaraswamy-inverse Exponential Distribution, International Journal of Statistics and Applications, 4(2), 113–116.
  49. Oguntunde, P.E., Adejumo, A., & Balogun, O.S. (2014b). Statistical Properties of the Exponentiated Generalized Inverted Exponential Distribution, Applied Mathematics, 4(2), 47–55.
  50. Oguntunde, P., & Adejumo, A. O. (2014c). The Transmuted Inverse Exponential Distribution. International Journal of Advanced Statistics and Probability, 3(1), 1–7. DOI: https://doi.org/10.14419/ijasp.v3i1.3684
  51. Oguntunde, P.E., (2017a). Generalisation of the Inverse Exponential Distribution: Statistical Properties and Applications. Phd. Thesis, Covenant University College of Science and Technology, Ota, Ogun State, 128–142.
  52. Oguntunde, P., Khaleel, M. A., Ahmed, M. T., Adejumo, A. O. & Odetunmibi O. A. (2017b). A New Generalization of the Lomax Distribution with Increasing, Decreasing, and Constant Failure Rate. Hindawi Modelling and Simulation in Engineering, 1–7. doi.org/10.1155/2017/6043169 DOI: https://doi.org/10.1155/2017/6043169
  53. Pinho, L. G. B., Cordeiro, G. M., & Nobre, J. S. (2015). The Harris extended exponential distribution. Communications in Statistics Theory and Methods, 44(16), 3486–3502. DOI: https://doi.org/10.1080/03610926.2013.851221
  54. Rasekhi, M., Alizadeh, M. & Hamedani, G. G. (2018). The Kumaraswamy Weibull Geometric Distribution with Applications. Pakistan Journal of Statistics, 14(2), 347–366. DOI: https://doi.org/10.18187/pjsor.v14i2.1551
  55. Silva, G. O., Ortega, E. M., and Cordeiro, G. M. (2010). The beta modified Weibull distribution. Lifetime data analysis, 16, 409–430. DOI: https://doi.org/10.1007/s10985-010-9161-1
  56. Silva, R. V. D., de Andrade, T. A., Maciel, D., Campos, R. P., & Cordeiro, G. M. (2013). A new lifetime model: The gamma extended Frechet distribution. Journal of Statistical Theory and Applications, 12(1), 39–54. DOI: https://doi.org/10.2991/jsta.2013.12.1.4
  57. Smith, R. L. & Naylor, J. C. (1987). A comparison of maximum likelihood and bayesian estimators for the three-parameter weibull distribution, Applied Statistics, 36, 258–369. DOI: https://doi.org/10.2307/2347795
  58. Tojeiro, C., Louzada, F., Roman, M. & Borges, P. (2014). The Complementary Weibull Geometric Distribution. Journal of Statistical Computation and Simulation, 84, 1345–1362. DOI: https://doi.org/10.1080/00949655.2012.744406
  59. Weibull, W. (1951). A statistical distribution function of wide applicability. Journal of Applied Mechanics, Transactions, 18, 293–297.
  60. Yousof, H. M., Afify, A. Z., Alizadeh, M., Butt, N. S., Hamedani, G. G. & Ali, M. M. (2015). The transmuted exponentiated generalized-G family of distributions. Pakistan Journal of Statistics and Operation Research, 11, 441-464. DOI: https://doi.org/10.18187/pjsor.v11i4.1164
  61. Yousof, H. M., Afify, A. Z., Hamedani, G. G. & Aryal, G. (2017a). The Burr X generator of distributions for lifetime data. Journal of Statistical Theory and Applications, 16, 288–305. DOI: https://doi.org/10.2991/jsta.2017.16.3.2
  62. Yousof, H. M., Rasekhi, M., Afify, A. Z., Alizadeh, M., Ghosh, I. & Hamedani G. G. (2017b). The beta Weibull-G family of distributions: theory, characterizations and applications, Pakistan Journal of Statistics, 33, 95-116.
  63. Yousof, H. M., Alizadeh, M., Jahanshahi, S. M. A., Ramires, T. G., Ghosh, I. & Hamedani G. G. (2017c). The transmuted Topp-Leone G family of distributions: theory, characterizations and applications, Journal of Data Science, 15, 723–740.
  64. Yousof, H. M., Altun, E., Ramires, T. G., Alizadeh, M. & Rasekhi, M. (2018). A new family of distributions with properties, regression models and applications, Journal of Statistics and Management Systems, 21(1), 163–188. DOI: https://doi.org/10.1080/09720510.2017.1411028
  65. Zelibe, S. C., Eghwerido, J. T. & Efe-Eyefia, E. (2019). Kumaraswamy alpha power inverted exponential distribution: properties and applications, Istatistik: Journal of the Turkish Statistical Association, 12(1-2), 35-48.