## Main Article Content

## Abstract

This work proposes an inverse odd Weibull (IOW) family of distributions for a lifetime distributions. Some mathematical properties of this family of distribution were derived. Survival, hazard, quantiles, reversed hazard, cumulative, odd functions, kurtosis, skewness, order statistics and entropies of this new family of distribution were examined. The parameters of the family of distributions were obtained by maximum likelihood. The behavior of the estimators were studied through simulation. The ﬂexibility and importance of the distribution by means of real data set applications were emphasized.

## Keywords

## Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.

**Authors who publish with this journal agree to the following terms:**

- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

*How to Cite*

*Pakistan Journal of Statistics and Operation Research*,

*16*(3), 617-633. https://doi.org/10.18187/pjsor.v16i3.2760

* * References

- Afify, A., Nofal, Z., Yousof, H., El Gebaly, Y. & Butt, N. (2013).The transmuted Weibull Lomax distribution. Properties and Application. Pakistan Journal of Statistics and Operation Research,11, 135–152.
- Afify A. Z., Alizadeh, M., Yousof, H. M., Aryal, G. & Ahmad, M. (2016). The transmuted geometric-G family of distributions: theory and applications. Pakistan Journal of Statistics, 32, 139–160.
- Afify, A.Z., Altun, E., Yousof, H.M., Alizadeh, M., Ozel, G. & Hamedani G.G. (2017). The Odd Exponentiated Half-Logistic-G Family: Properties, Characterizations and Applications. Chilean Journal of Statistics, 8(2), 65–91.
- Agu, F. I. & Onwukwe, C. E. (2019a). Modified Laplace distribution, its properties and applications. AJPAS, 4(1), 1–14.
- Al-Mofleh, H. (2018). On Generating a New Family of Distributions Using the Tangent Function. Pakistan Journal of Statistics and Operation Research, 3, 471–499.
- Alzaatreh, A., Lee, C. & Famoye, F. (2013). A new method for generating families of continuous distributions. Metron, 71, 63–79.
- Alzaatreh, A., Famoye, F. & Lee, C. (2013b). Weibull-Pareto distribution and its applications, Communications in Statistics Theory and Methods, 42, 1673–1691.
- Alzaatreh, A., Mansoor, M., Tahir, M. H., Zubair, M., & Ali, S (2016), The Gamma Half-Cauchy Distribution: Properties And Applications. Hacettepe Journal of Mathematics and Statistics, 45 (4), 1143–1159.
- Anake, T. A., Oguntunde, P. E.,& Odetunmibi, O. A. (2015). On a Fractional Beta-Exponential Distribution. International Journal of Mathematics and Computations, 26(1), 26–34.
- Aryal, G. R. &Yousof, H. M. (2017). The exponentiated generalized-G Poisson family of distributions. Economic Quality Control, 32(1), 1–17.
- Bourguinon, M. Silva, B. R and Cordeiro, G.M. (2014) The Weibull-G family of probability distributions. Journal of Data Science, (12), 53–68.
- Cooray, K. (2006). Generalization of the Weibull distribution: the odd Weibull family. Statistical Modelling, 6(3),265–277.
- Cooray, K. (2006). A study of the moments and likelihood estimators of the odd Weibull distribution. Statistical Methodology,DOI:10.1016/j.stamet.2015.03.003.
- Cordeiro, G. M., Afify, A. Z., Yousof, H. M., Pescim, R. R. & Aryal, G. R. (2017a). The exponentiated Weibull-H family of distributions: Theory and Applications. Mediterranean Journal of Mathematics,14, 1-22.
- Cordeiro, G. M., Yousof, H. M., Ramires, T. G. & Ortega, E. M. M. (2017b). The Burr XII system of densities: properties, regression model and applications. Journal of Statistical Computation and Simulation, 88(3), 432-456.
- Cordeiro, G.M., Hashimoto, E.M. & Ortega, E.M.M. (2014). The McDonald Weibull model. Statistics: A Journal of Theoretical and Applied Statistics, 48, 256–278.
- Cordeiro, G.M., Ortega, E.M.M. and Nadarajah, S. (2010). The Kumaraswamy Weibull distribution with application to failure data. Journal of the Franklin Institute, 347, 1317–1336.
- Cordeiro, G. M., Ortega, E. M. & da Cunha, D. C. C. (2013). The exponentiated generalized class of distributions. Journal of Data Science, 11, 1–27.
- Efe-Eyefia, E. Eghwerido, J. T. and Zelibe, S. C. (2020). Theoretical Analysis of the Weibull Alpha power inverted exponential distribution: properties and applications, Gazi University Journal of Science, 33(1), 265-277.
- Eghwerido, J. T., Zelibe, S. C.,Ekuma-Okereke, E. & Efe-Eyefia, E. (2019). On the extented new generalized exponential distribution: properties and applications, FUPRE Journal of Scientific and Industrial Research, 3(1), 112 - 122.
- Eghwerido, J. T., Oguntunde, P. E & Agu, F. I. (2020a). The alpha power Marshall-Olkin-G distribution: properties, and applications. Sankhya A - The Indian Journal of Statistics, Article in the press.
- Eghwerido, J. T., Zelibe, S. C. & Efe-Eyefia, E. (2020b). The transmuted alpha power-G family of distributions, Journal of Statistics and Management Systems, Article in the press.
- Eghwerido, J. T., Zelibe, S. C. & Efe-Eyefia, E. (2020c). Gompertz-Alpha power inverted exponential distribution: properties and applications, Thailand Statistician, 18(3), 319 - 332.
- Eghwerido, J. T., Nzei, L., C. & Agu, F. I. (2020d). The alpha power Gompertz distribution: characterization, properties, and applications. Sankhya A - The Indian Journal of Statistics, /doi:10.1007/s13171-020-00198-0.
- Eghwerido, J. T., Efe-Eyefia, E. & Otakore, O . (2020e). Performance Rating of the Zubair Gompertz distribution: properties and applications, Journal of Statistics and Management Systems, Article in the press.
- Eghwerido, J.T., Nzei, L. C., Ikwuoche, D. J. & Adubisi, O. D. (2020f). The Gompertz extended generalized exponential distribution: properties and applications, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 69(1), 739–753. DOI: 10.31801/cfsuasmas.602930.
- Eliwa,M. S. & El-Morshedy, M. (2019). The odd flexible Weibull-H family of distributions: properies and estimation with applications to complete and upper record data, Filomat., 33(9), 2635–2652.
- Eliwa,M. S. and El-Morshedy, M. (2020). Bivariate odd Weibull-G family of distributions: properies, Bayesian and non-Bayesian estimation with bootsrap confidence intervals and application, Journal of Taibah University for Science, 14(1), 331–345.
- Gupta, R. C, Gupta, P. I. & Gupta, R. D. (1998). Modeling failure time data by Lehmann alternatives. Communications in Statistics-Theory and Methods, 27, 887–904.
- Gupta, R. D., & Kundu, D. (1999). Generalized exponential distribution. Australian and New Zealand Journal of Statistics, 41 (2), 173–188.
- Harter, H. L., & Moore, A. H. (1965). Maximum-likelihood estimation of the parameters of gamma and Weibull populations from complete and from censored samples. Technometrics, 7(4), 639–643.
- Hassan, A. S., & Al-Thobety, A. K. (2012). Optimal design of failure step stress partially accelerated life tests with type II inverted Weibull data. International Journal of Engineering Research and Applications, 2(3), 3242–3253.
- Hassan, A. S., Assar, M. S., & Zaky, A. N. (2015). Constant-stress Partially Accelerated life tests with type II Inverted Weibull Distribution with Multiple Censored data. International Journal of Advanced Statistics and Probability, 3(1), 72–82.
- Hassan, A. S., Elsherpieny, E. A., & Mohamed, R. E., (2018). Odds Generalized Exponential-Inverse Weibull Distribution: Properties and Estimation, Pakistan Journal of Statistics and Operation Research, 1, 1–22.
- Jiang, H., Xie, M., & Tang, L. C. (2008). On the odd Weibull distribution. J. Risk Reliab. 222(4), 583–594.
- Kenney, J. F., (1939) Mathematics of Statistics Part 1., Chapman and Hall, London.
- Khan, M. N. (2015). The modified beta Weibul distribution with applications. Hacettepe Journal of Mathematics and Statistics, 44, 1553–1568.
- Korkmaz, M., Alizadeh M., Yousof, H. M., & Butt, N. S. (2018). The Generalized Odd Weibull Generated Family of Distributions: Statistical Properties and Applications. Pakistan Journal of Statistics and Operation Research, 3, 541–556.
- Lee, C., Famoye, F., & Olumolade, O. (2007). Beta-Weibull distribution: some properties and applications to censored data. Journal of Modern Applied Statistical Methods, 6, 173–186.
- Manal, M.N. & Fathy, H.E. (2003). On the Exponentiated Weibull Distribution. Communications in Statistics Theory and Methods, 32, 1317–1336.
- Merovci, F., Khaleel, M. A., Ibrahim, N. A., & Shitan, M. (2016) The beta type X distribution: properties with application, Springer-Plus, (5), 697.
- Moors, J. J. A., (1988). A quantile Alternative for Kurtosis, The Statistician, 37(1), 25–32.
- Mudholkar, G. S. & Srivastava, D. K. (1993). Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Transactions on Reliability42 (2), 299-302.
- Nichols, M.D. & Padgett, W.J. (2006).A Bootstrap control chart for Weibull percentiles. Quality and Reliability Engineering International, 22, 141–151.
- Nofal, Z. M., Afify, A. Z., Yousof, H. M. and Cordeiro, G. M. (2017). The generalized transmuted-G family of distributions. Communications in Statistics Theory and Methods, 46, 4119–4136.
- Nzei, L. C., Eghwerido, J. T. & Ekhosuehi, N. (2020). Topp-Leone Gompertz Distribution: Properties and Application, Journal of Data Science, Article in the press.
- Oguntunde, P. E., Odetunmibi, O. A., & Adejumo, A. O. (2013). On Sum of Exponentialially Distributed Random Variables: A Convolution Approach. European Journal of Statistics and Probability, 1(2). 1–8.
- Oguntunde, P.E., Babatunde, O.S., & Ogunmola, A.O., (2014a). Theoretical Analysis of the Kumaraswamy-inverse Exponential Distribution, International Journal of Statistics and Applications, 4(2), 113–116.
- Oguntunde, P.E., Adejumo, A., & Balogun, O.S. (2014b). Statistical Properties of the Exponentiated Generalized Inverted Exponential Distribution, Applied Mathematics, 4(2), 47–55.
- Oguntunde, P., & Adejumo, A. O. (2014c). The Transmuted Inverse Exponential Distribution. International Journal of Advanced Statistics and Probability, 3(1), 1–7.
- Oguntunde, P.E., (2017a). Generalisation of the Inverse Exponential Distribution: Statistical Properties and Applications. Phd. Thesis, Covenant University College of Science and Technology, Ota, Ogun State, 128–142.
- Oguntunde, P., Khaleel, M. A., Ahmed, M. T., Adejumo, A. O. & Odetunmibi O. A. (2017b). A New Generalization of the Lomax Distribution with Increasing, Decreasing, and Constant Failure Rate. Hindawi Modelling and Simulation in Engineering, 1–7. doi.org/10.1155/2017/6043169
- Pinho, L. G. B., Cordeiro, G. M., & Nobre, J. S. (2015). The Harris extended exponential distribution. Communications in Statistics Theory and Methods, 44(16), 3486–3502.
- Rasekhi, M., Alizadeh, M. & Hamedani, G. G. (2018). The Kumaraswamy Weibull Geometric Distribution with Applications. Pakistan Journal of Statistics, 14(2), 347–366.
- Silva, G. O., Ortega, E. M., and Cordeiro, G. M. (2010). The beta modified Weibull distribution. Lifetime data analysis, 16, 409–430.
- Silva, R. V. D., de Andrade, T. A., Maciel, D., Campos, R. P., & Cordeiro, G. M. (2013). A new lifetime model: The gamma extended Frechet distribution. Journal of Statistical Theory and Applications, 12(1), 39–54.
- Smith, R. L. & Naylor, J. C. (1987). A comparison of maximum likelihood and bayesian estimators for the three-parameter weibull distribution, Applied Statistics, 36, 258–369.
- Tojeiro, C., Louzada, F., Roman, M. & Borges, P. (2014). The Complementary Weibull Geometric Distribution. Journal of Statistical Computation and Simulation, 84, 1345–1362.
- Weibull, W. (1951). A statistical distribution function of wide applicability. Journal of Applied Mechanics, Transactions, 18, 293–297.
- Yousof, H. M., Afify, A. Z., Alizadeh, M., Butt, N. S., Hamedani, G. G. & Ali, M. M. (2015). The transmuted exponentiated generalized-G family of distributions. Pakistan Journal of Statistics and Operation Research, 11, 441-464.
- Yousof, H. M., Afify, A. Z., Hamedani, G. G. & Aryal, G. (2017a). The Burr X generator of distributions for lifetime data. Journal of Statistical Theory and Applications, 16, 288–305.
- Yousof, H. M., Rasekhi, M., Afify, A. Z., Alizadeh, M., Ghosh, I. & Hamedani G. G. (2017b). The beta Weibull-G family of distributions: theory, characterizations and applications, Pakistan Journal of Statistics, 33, 95-116.
- Yousof, H. M., Alizadeh, M., Jahanshahi, S. M. A., Ramires, T. G., Ghosh, I. & Hamedani G. G. (2017c). The transmuted Topp-Leone G family of distributions: theory, characterizations and applications, Journal of Data Science, 15, 723–740.
- Yousof, H. M., Altun, E., Ramires, T. G., Alizadeh, M. & Rasekhi, M. (2018). A new family of distributions with properties, regression models and applications, Journal of Statistics and Management Systems, 21(1), 163–188.
- Zelibe, S. C., Eghwerido, J. T. & Efe-Eyefia, E. (2019). Kumaraswamy alpha power inverted exponential distribution: properties and applications, Istatistik: Journal of the Turkish Statistical Association, 12(1-2), 35-48.