Main Article Content
Abstract
This paper deals with the problem of classical and Bayesian estimation of stress-strength reliability (R=P(X<Y)) based on upper record values from generalized inverted exponential distribution (GIED). Hassan {et al.} (2018) discussed the maximum likelihood estimator (MLE) and Bayes estimator of $R$ by considering that the scale parameter to be known for defined distribution while we consider the case when all the parameters of GIED are unknown. In the classical approach, we have discussed MLE and uniformly minimum variance estimator (UMVUE). In Bayesian approach, we have considered the Bays estimator of R by considering the squared error loss function. Further, based on upper records, we have considered the Asymptotic confidence interval based on MLE, Bayesian credible interval and bootstrap confidence interval for $R$. Finally, Monte Carlo simulations and real data applications are being carried out for comparing the performances of the estimators of R.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following License
CC BY: This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.