Main Article Content

Abstract

In this study we introduce a new extended class of continuous distributions named generalized Lindley family of distributions. Some properties of the new generator, including ordinary moments, quantile, generating and entropy functions, which hold for any baseline model, are presented. The method of maximum likelihood is used for estimating the model parameters. The flexibility of the new family of distributions is shown via an application on the wind speed data set. The results shows that the proposed family is better than well-known distributions including log-logistic, Burr, Dagum, Frechet, Pearson, Dagum, Lindley, Weibull and exponential distributions.

Keywords

Generated Family Lindley Distribution Maximum Likelihood Moment Quantile Function Entropy

Article Details

Author Biography

Gamze Ozel, Department of Statistics Hacettepe University, Turkey

Hacettepe Universiety

How to Cite
Cakmakyapan, S., & Ozel, G. (2021). Generalized Lindley Family with application on Wind Speed Data. Pakistan Journal of Statistics and Operation Research, 17(2), 387-397. https://doi.org/10.18187/pjsor.v17i2.2518

References

  1. Aarset, M. V. (1987). How to identify a bathtub hazard rate. IEEE Transactions on Reliability, 36(1), 106-108.
  2. Adel Rastkhiz, S. E., Mobini Dehkordi, A., Yadollahi Farsi, J. & Azar, A. (2019). A new approach to evaluating entrepreneurial opportunities, Journal of Small Business and Enterprise Development, (26)(1), 67-84. https://doi.org/10.1108/JSBED-01-2018-0013
  3. Afify, A. Z., Yousof, H. M., Cordeiro, G. M., Ortega, E. M. M. & Nofal, Z. M. (2016b). The Weibull Fréchet distribution and its applications. Journal of Applied Statistics, 43(14), 2608-2626.
  4. Alzaatreh, A., Lee, C. & Famoye, F. (2013). A new method for generating families of distributions, Metron, (7)(1), 63-79.
  5. Alzaghal, A., Famoye , F. & Lee, C. (2013). Exponentiated T-X family of distributions with some applications, Int. J. Prob. Stat., (2), 31-49.
  6. Cakmakyapan, S. & Ozel, G. (2016) .The Lindley Family of Distributions: Properties and Applications
  7. Cordeiro, G. M. Ortega, E. M. M. & Popovi´c B. V. (2013). The gamma-Lomax distribution, Journal of Statistical computation and Simulation , doi:10.1080/00949655.2013.822869 .
  8. Cordeiro, G.M, & de Castro M. (2011). A new family of generalized distributions, J. Stat. Comput. Sim., (81), 883-893.
  9. Dokur, E. & Kurban, M. (2015). Wind Speed Potential Analysis Based On Weibull Distribution. Balkan Journal of Electrical And Computer Engineering, 3(4), 231-235.
  10. Eugene, N., Lee, C. & Famoye, F. (2002). Beta-normal distribution and its applications, Communication Statistical Theory,(31), 497-512.
  11. Ghitany, M.E., Alqallaf, F, Al-Mutairi, D.K. & Husain, H.A. (2011). A two-parameter Lindley distribution and its applications to survival data, Math. Comput. Simulat., (81), 1190-1201.
  12. Ghitany, M.E., Atieh, B. & Nadarajah, S. (2008). Lindley distribution and its application, Math. Comput. Simulat., (78) 493-506.
  13. Gomes-Silva, F. Percontini, A, de Brito, E., Ramos M.W., Venancio, R. & Cordeiro, G. (2017). The Odd Lindley-G Family of Distributions, Austrian Journal of Statistics, 46, 65-87.
  14. Gradshteyn, I.S. & Ryzhik, I.M. (2007). Table of Integrals, Series and Products, Academic Press, New York.
  15. Hacettepe University Bulletin of Natural Sciences and Engineering Series B: Mathematics and Statistics, 46(6), 1113-1137.
  16. Hassan, A. S. & Hemeda, S. E. (2016). The additive Weibull-g family of probability distributions. International Journals of Mathematics and Its Applications, (4), 151-164.
  17. Lindley, D.V. (1958). Fiducial distributions and Bayes' theorem, J. Roy. Stat. Soc. B 20, 102-107.
  18. Mahdizadeh, M. & Zamanzade, E. (2019). Goodness-of-t testing for the Cauchy distribution with application to nancial modeling, Journal of King Saud University - Science, (31)(4), 1167-1174.
  19. Mahdizadeh, M., & Zamanzade, E. (2017). New goodness of t tests for Cauchy distribution. Journal of Applied Statistics, (44)(6), 1106-1121.
  20. Marshall, A.N. & Olkin, I. (1997). A new method for adding a parameter to a family of distributions with applications to the exponential and Weibull families, Biometrika, (84), 641-552.
  21. Mazucheli, J. & Achcar, J. A. (2011). The Lindley distribution applied to competing risks lifetime data, Comput. Meth. Prog. Bio., (104), 188-92.
  22. Morgan, E. C., Lackner, M., Vogel, R. M. & Baise, L. G. (2011). Probability distributions for offshore wind speeds. Energy Conversion and Management, 52(1), 15-26.
  23. Nadarajah, S. & Kotz, S. (2006). The exponentiated type distributions. Acta Applicandae Mathematicae, (92), 97-111.
  24. Rényi, A. (1961). On measures of entropy and information, In: Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, 547-561. University of California Press, Berkeley.
  25. Reyad, H., Korkmaz, M.C., A_fy, A.Z., Hamedani, G.G. & Othman, S.(2019). The Fr_echet Topp Leone-G family of distributions: Properties, characterizations and applications. Annals of Data Science, https://doi.org/10.1007/s40745-019-00212-9.
  26. Sahin, B., Bilgili, M. & Akilli, H. (2005). The wind power potential of the eastern Mediterranean region of Turkey. Journal of Wind Engineering and Industrial Aerodynamics, 93(2), 171-183.
  27. Shannon, C.E. (1951). Prediction and entropy of printed English. Bell Syst. Tech. J. (30),50-64.
  28. Tiwari, A., Mishra, S. & Maurya, R. (2020). Measurement of Inequality and Study of Social Influence on Distribution of Land Holding in India. International Journal Of Agricultural Sciences. (16), 925-935.
  29. Zamanzade, E. & Arghami, N.R. (2012). Testing normality based on new entropy estimators, Journal of Statistical Computation and Simulation, 82(11), 1701-1713.
  30. Zamanzade, E. (2014). Testing uniformity based on new entropy estimators, Journal of Statistical Computation and Simulation, (85)(16), 3191-3205.
  31. Zamanzade, E., & Mahdizadeh, M. (2017). Entropy estimation from ranked set samples with application to test of fit. Revista Colombiana de Estadstica, (40)(2), 223-241.
  32. Zografos, K. & Balakrishnan, N. (2009). On families of beta- and generalized gamma-generated distributions and associated inference. Statistical Methodology, (6), 344-362.