Main Article Content
Abstract
n this paper, we propose a new distribution, namely alpha-beta-skew generalized t
distribution. The proposed distribution is really flxible and includes as special models some important distributions like Normal, t-student, Cauchy and etc as its marginal component distributions. It features a probability density function with up to three modes. The moment generating function as well as the main moments are provided. Inference is based on a usual maximum-likelihood estimation approach and a small Monte Carlo simulation is conducted for studying the asymptotic properties of the maximum-likelihood estimate. The usefulness of the new model is illustrated in a real data
distribution. The proposed distribution is really flxible and includes as special models some important distributions like Normal, t-student, Cauchy and etc as its marginal component distributions. It features a probability density function with up to three modes. The moment generating function as well as the main moments are provided. Inference is based on a usual maximum-likelihood estimation approach and a small Monte Carlo simulation is conducted for studying the asymptotic properties of the maximum-likelihood estimate. The usefulness of the new model is illustrated in a real data
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following License
CC BY: This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
How to Cite
Lak, F., Alizadeh, M., Monfared, M. E. D., & Esmaeili, H. (2019). The Alpha-Beta Skew Generalized t Distribution: Properties and Applications. Pakistan Journal of Statistics and Operation Research, 15(3), 605-616. https://doi.org/10.18187/pjsor.v15i3.2404