Main Article Content
Abstract
Randomized response technique introduces anonymity into subjects' responses hence encouraging more honest responses. In quantitative randomized response model, additive and multiplicative models have been developed to reduce bias. However, additive and multiplicative models may not be sufficient to reduce this bias so the generalized optional scrambling randomized response model proposed is able to reduce these problems. We also improved mean estimation utilizing information from a non-sensitive auxiliary variable by way of ratio and regression estimators in the proposed model.Â
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following License
CC BY: This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.