Main Article Content
Abstract
An active set algorithm is introduced for positive definite and positive semi definite linear complementarity problems. The proposed algorithm is composed of two phases. Phase 1, the feasibility phase and phase 2, the optimality phase. In phase 1, the ellipsoid method is employed to test for feasibility and provide an advanced starting point if the problem is feasible. Providing such a warm start permits a good estimate of the active set. In phase 2, a criterion based on the complementarity condition is used to detect the working set per iteration until optimality is reached. This criterion leads to a valuable reduction in the size of the problem solved per iteration to obtain a search direction. Numerical examples are solved to illustrate the performance of the algorithm and a practical example in rigid body dynamics is solved to demonstrate the usage of the algorithm to solve such problems.
Keywords
Mathematical programming
Linear complementarity problems
Convex quadratic programming
Active set methods
rigid body dynamics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following License
CC BY: This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
How to Cite
Sharaf, I. M. (2016). An active set algorithm for a class of linear complementarity problems arising from rigid body dynamics. Pakistan Journal of Statistics and Operation Research, 12(2), 339-352. https://doi.org/10.18187/pjsor.v12i2.1284