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Abstract 

Reduction of the high dimensional binary classification data using penalized logistic regression is one of 

the challenges when the explanatory variables are correlated. To tackle both estimating the coefficients and 

performing the variable selection simultaneously, elastic net penalty was successfully applied in high 

dimensional binary classification. However, elastic net has two major limitations. First it does not 

encourage grouping effects when there is no high correlation. Second, it is not consistent in variable 

selection. To address these issues, an adjusted of the elastic net (AEN) and its adaptive adjusted elastic net 

(AAEM), are proposed to take into account the small and medium correlation between explanatory 

variables and to provide the consistency of the variable selection simultaneously. Our simulation and real 

data results show that AEN and AAEN have advantage with small, medium, and extremely correlated 

variables in terms of both prediction and variable selection consistency comparing with other existing 

penalized methods.  
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1.   Introduction 

With the advancement of technologies, massive amount of data with increasing 

dimensions have been generated in many areas such as genetics, medical, economic and 

social sciences. The expansion of the data is in two dimensions: the number of variables 

and the number of observations. “High dimensional data” refers to the situation where the 

number of variables measured is greater than the number of observations in the data. This 

differs from traditional datasets for statistical analysis where we have many observations 

on a few variables. Such high dimensional data has posed new challenges to statistical 

analysis, because a lot of conventional statistical methods do not automatically apply into 

these datasets, for example, the curse of dimensionality makes many classical regression 

models, such as logistic regression, ineffective, because statistical issues associated with 

modeling high dimensional data include model overfitting, estimation instability, 

computational difficulty (Pourahmadi, 2013).  

 

How to reduce the dimensionality has been an important research question in statistical 

applications. One way to handle the high dimensional data is to perform data reduction. 

To do this, various penalized methods have been proposed begin by ridge penalty (Hoerl 
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& Kennard, 1970). It estimates the regression coefficients through 2 -norm penalty. It is 

well-known that ridge regression shrinks the coefficients of correlated predictor variables 

toward each other, allowing them to borrow strength from each other (Friedman, Hastie, 

& Tibshirani, 2010). The least absolute shrinkage and selection operator (LASSO) was 

proposed by Tibshirani (1996) to estimate the regression coefficients through 1 -norm 

penalty. Zou and Hastie (2005) proposed the elastic net penalty which is based on a 

combined penalty of LASSO and ridge regression penalties in order to overcome the 

drawbacks of using the LASSO and ridge regression on their own. 

 

Usually, in high dimensional data the explanatory variables are correlated. If there is a 

group of highly correlated variables, the LASSO will randomly select only one variable 

from this group and drop the rest whereas elastic net will select the whole group of the 

highly correla-ted explanatory variables (Zou & Hastie, 2005; Zhou, 2013). Analogously, 

Bondell and Reich (2008) proposed a penalty called OSCAR to encourage selection of a 

group of highly correlated explanatory variables. Elastic net often performs better than 

LASSO in terms of prediction error when there is correlation among variables, also 

OSCAR has a comparable performance similar to elastic net (Zeng & Xie, 2011). Tutz 

and Ulbricht (2009) proposed correlation-based penalty to deal with grouping effects. 

This penalty just makes variable shrinkage rather than variable selection. Elastic net 

penalty lacks consistent variable selection (oracle property), even though it outperforms 

LASSO. Zou and Zhang (2009) proposed adaptive elastic net to handle grouping effects 

and enjoying oracle property simultaneously. El Anbari and Mkhadri (2014) explained 

though experimental studies that elastic net seems to be slightly less reliable if the 

correlation between explanatory variables is not so extreme (i.e. 0.95  ). In this paper, 

an adjusted of the elastic net (AEN) and its adaptive adjusted elastic net (AAEM), are 

proposed to take into account the small and medium correlation between explanatory 

variables and to provide the consistency of the variable selection simultaneously. The 

remainder of this paper organizes as follows. Section 2 covers the penalized logistic 

regression methods. Description of the AEN and AAEM is explained in section 3. 

Sections 4 and 5 are devoted to simulation studies and results. While section 6 covered 

the real data analysis. We end this paper with a conclusion in section 7. 

2.   Penalized Logistic Regression Model 

Logistic regression is a statistical method to model a binary classification problem. The 

regression function has a nonlinear relation with the linear combination of the 

explanatory variables. In binary classification, the response variable of the logistic 

regression has two values either 1 for the positive class or 0 for the negative class. Let 

{0,1}i y  be a vector of size 1n   of tissues, and let jx  be a 1p   vector of explanatory 

variables. The logistic transformation of the vector of probability estimates 

( 1| )i i jp y   x  is modeled by a linear function, logit transformation:  
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where 0  is the intercept and j  is a 1p   vector of unknown explanatory variable 

coefficients. The log-likelihood function of (1) is defined as 

 0
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n

i ij i ij
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Logistic regression offers the advantage of simultaneously estimating the probabilities 

( )ij x  and 1 ( )ij x  for each class and classifying subjects. The probability of 

classifying the thi  sample in class 1 is estimated by

0 0

1 1

ˆ exp( ) /1 exp( )
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T T

i j j j j

j j
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    x x . The predicted class is then obtained by 

ˆ{ 0.5}iI   , where ( )I  is an indicator function. 

 

Penalized logistic regression (PLR) adds a nonnegative penalty term to Eq. (1), such that 

the size of the explanatory variables coefficients in high dimension can be controlled. 

Several penalty terms have been discussed in the literature (Li, Jia, & Zhao, 2013; 

Tibshirani, 1996; Zhenqiu et al., 2007). The 1 -norm penalty, proposed by Tibshirani 

(Tibshirani, 1996), is one of the popular penalization terms. The 1 -norm penalty 

performs explanatory variables selection and estimation simultaneously by constraining 

the log-likelihood function of variables coefficients. Thus, the PLR is defined as:  
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The estimation of the vector   is obtained by minimizing Eq. (3)  
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where ( )P   is the penalty term that regularized the estimates. The penalty term 

depends on the positive tuning parameter,  , which controls the tradeoff between fitting 

the data to the model and the effect of the penalization. In other words, it controls the 

amount of shrinkage. For the 0  , we obtain the maximum likelihood estimation 

(MLE) solution. In contrast, for large values of   the influence of the penalization term 

on the coefficient estimates increases. Choosing the tuning parameter is an important part 

of the model fitting. If the focus is on classification, the tuning parameter should find the 

right balance between the bias and variance to minimize the misclassification error. 

Without loss of generality, it is assumed that the explanatory variables are standardized, 

1
0

n

iji
x


  and  1 2

1
( ) 1, 1,2,...,

n

iji
n x j p


   . As a result, the intercept 0  is not 

penalized. The estimation of the vector   using the LASSO ( 1 -norm penalization) is 

defined as: 
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where   is a tuning parameter. It reduces to the MLE estimator when 0  . On the 

other hand, if    , the penalization term forces all the explanatory variables to be 

zeros. In practice, the value of   is often chosen by a cross-validation procedure. To 

solve Eq. (5), the traditional numerical methods are through MLE or the Newton-

Raphson’s algorithm. However, the computation of these methods is prohibitive when the 

number of explanatory variables is large (Zhu & Hastie, 2004). Equation (5) can be 

efficiently solved by the coordinate descent algorithm (Friedman et al., 2010; Park & 

Hastie, 2008). 

 

The LASSO has an advantage in that it is computationally feasible in high dimensional 

classification data. On the other hand, the LASSO has three main drawbacks. First of all, 

if p n  (i.e. the explanatory variables are greater than the number of samples), the 

LASSO selects at most n  variables because of the nature of the convex optimization 

problem. In addition, the LASSO cannot handle the effect of grouping. When the 

pairwise correlations among a group of explanatory variables are very high, then the 

LASSO tends to select only one variable from the whole group and does not take into 

account which one is selected (Zeny, Xiaojian, Sanjeena, & Paul, 2012). Lastly, the 

LASSO lacks the oracle properties, as stated in Fan and Li (Fan & Li, 2001).  

 

Elastic net is a penalization method for explanatory variables selection, which is 

introduced by Zou and Hastie (2005) to deal with the first two drawbacks of LASSO. 

Elastic net tries to merge the 2 -norm and the 1 -norm penalizations, by using ridge 

regression penalty to deal with high correlation problem while taking advantage of 

LASSO penalization in variable selection property. The PLR using elastic net penalty is 

defined by 

  2

1 2

1 1 1

ˆ arg min ln ( ) (1 ) ln(1 ( ) .
p pn

Elastic i ij i ij j j
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As we observe from Eq. (6), elastic net estimator depends on two non-negative tuning 

parameters 1  and 2  which lead to penalized logistic regression solution. However, 

elastic net performs well when the pairwise correlations between variables are very high. 

El Anbari and Mkhadri (2014) stated that if the absolute correlation between genes is less 

than 0.95, elastic net may be slightly less reliable. Moreover, elastic net does not take into 

account the correlation structure among genes (Bühlmann, Rütimann, van de Geer, & 

Zhang, 2013). Additionally, it was pointed out by Zou and Zhang (2009) that the elastic 

net fails in terms of achieving oracle property, although the grouping effect problem for 

elastic net remains. As a result, adaptive elastic net was introduced by Zou and Zhang 

(2009) and Ghosh (2011), which it combines the 2 -norm penalization with the adaptive 

LASSO. 

3.   Adjusted Elastic Net Penalty 
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In this section, we present our proposed adjusted method, AEN and AAEN, in logistic 

regression model. The main idea behind AEN is to take into account the information 

about the empirical correlation of the data matrix in the 2 -norm term because elastic net 

does not. Suppose without loss of generality that the explanatory variables are scaled, we 

define the AEN estimator as 
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where 1  and 2  are non-negative tuning parameters. 
,j pr

 
is the correlation between j  

and p  explanatory variables where p j . The quantity 
2

,( )j j p pr   is helpful to 

make AEN reliable if the correlation between explanatory variables is not so extreme. 

The last term from Eq. (7) is greater than zero for any vector  . Therefore, 
, ,( ) ( )j p j pr r  

represents a Cholesky’s decomposition. After suitable data argumentation, Eq. (7) is 

equivalent to a LASSO. The AEN was solved using coordinate descent optimization 

(Friedman et al., 2010) which a computationally efficient method for solving this type of 

convex optimization problem. The optimal AEN model was found by a grid search over 

the parameters 1  and 2 .  

 

Furthermore, the adaptive version of AEN, AAEN, is defined by 
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where  

 
( )

ˆ(1/ | |) , 1,2,...,j j AENw j p         (9) 

where 0  . For simplicity, 1   was used for both simulation study and real data 

application. 

4.   Simulation Study 

In this section, simulation studies are used to investigate the performance of the proposed 

AEN and AAEN. Furthermore, we compare AEN and AAEN with elastic net. In all 

simulations the response variable was generated as 

1 1

[exp( ) /1 exp( )]
p p

T T

j true j true

j j

y B  
 

 x x . All simulation cases are replicate 50 times. 

For every simulation case and in each replication we generate training, validation, and 

testing data. The training data were used for model fitting. The validation data were used 

to determine the tuning parameters. The testing data were used to evaluate the 

penalization methods. For each case, the observation numbers of the corresponding data 

sets are denoted by training/validation/testing. Based on the simulated data, we used three 

metrics to evaluate all penalization methods which were studied in this paper, miss-

classification errors for the test data (MEt), hits which stands for the number of correctly 

identified true variables, and false positive (FP) which denotes to the number of zero 

variables which are wrongly considered as true variables. 
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Since we investigate a penalization method with both variable selection and grouping 

property, we use simulation scenario with different values of the correlation and different 

numbers of training, validation, and testing observations.  

Simulation Scenario: In this setting, we generate data sets with sample sizes 50/50/100 

and 1000 explanatory variables. Four cases are studied. The grouping effects were 

generated as follows 

1 1

2 2

3 3

1: , ~ (0,1), 1,2,3;

2 : , ~ (0,1), 4,5,6;

3: , ~ (0,1), 7,8,9.

i i

i i

i i

Group  x w w N i

Group   x w w N i

Group   x w w N i







  

  

  

 

 

Furthermore, the noisy explanatory variables were generated as 

~ (0,1), 10,11,....,1000ix N i  .  

Case A:  In this case we set ~ (0,0.01), 1,2,...,9i N i  . The correlations among 

variables within each group are 0.98. The true variables’ parameters were

9 991

(0.3,....,0.3,0,....,0)  . 

Case B:  This simulation is like case A except that ~ (0,0.6), 1,2,...,9i N i  . Thus, 

there are correlations within each group around 0.7. 

Case C:  Similar to case A, we set ~ (0,0.8), 1,2,...,9i N i   in order to get 

correlations within each group equal 0.5. 

Case D:  Similar to previous cases, in order to get correlations within each group equal 

0.3. We assume that ~ (0,1.5), 1,2,...,9i N i  . 

5.   Simulation Results 

To examine the performance of the AEN and AAEN penalties we compare it with elastic 

net. For the tuning parameters of elastic net, AEN, and AAEN, a prior value of 2  is 

required to transform the original training data set to the new augmented training data set. 

A sequence of values for 2  is given, where 20 100  . The miss-classification error 

for the training set (MEt) is computed as the criterion of evaluation. Figure 1 displays the 

corresponding boxplots of the MEt for the three used methods for the four cases. It is 

clearly seen that AEN and AAEN has less variability comparing with elastic net. Also, it 

can be seen that AEN and AAEN are slightly similar. 

 

Table 1 summarizes the median MEt and the standard deviation (Std. Dev.) of the median 

MEt which estimated by using bootstrap with 100B   resampling on 50 MEt values. In 

addition, the median number of hits and FP are reported too. In each case, the bold font 

indicates the best method on MEt, Std. Dev., hits, and FP. Table 1 reveals that the AAEN 

method produces considerably smaller median MEt and standard deviation among all 

methods in all cases. For example, in case A the median MEt of AAEN is 5.782 with 

standard deviation equals to 1.561 which is smaller than 5.824 (1.766) and 6.348 (2.010) 

for AEN and elastic net methods respectively. Furthermore, the reduction of MEt is 
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usually substantial compared to elastic net. For example, the reduction in case A, case B, 

case C, and case D is 0.67%, 1.60%, 5.01%, and 6.60% respectively. Moreover, in case 

A, there is high collinearity among variables. Elastic net is supposed to have the best 

performance then AEN because elastic net deals with extremely highly correlations. In 

addition, our method performs well in terms of MEt when the correlation is small and 

medium. Besides, from the simulation results we can observe that elastic net came the 

last method.  

 

For variable selection accuracy, the penalization methods should include all important 

variables (non-zero variables), hits and FP were used to measure the performance of 

AAEN, AEN, and elastic net in term of selecting the non-zero variables. From Table 1 

both AAEN and AEN succeed in selecting the true non-zero variables in most of the 

cases in term of hits. For example, AEN selects the all nine non-zero variables. 

Moreover, when the correlation coefficient varies from small, medium, to extremely high 

correlation elastic net selects less non-zero variables comparing to AAEN and AEN. We 

can expect such a result because elastic has its limitation in biased selection. In terms of 

FP, AAEN and AEN methods usually select less ineffective variables than elastic net in 

most cases. To this end, it is obvious from our simulation results that the AAEN and 

AEN methods perform better in term of MEt by obtaining smaller values, hits, and FP 

followed by elastic net for small, medium, and extremely high correlation and has greater 

advantage of variable selection with grouping effects in logistic regression model.  

6.   Real Data Results 

To evaluate our proposed method in the field of binary classification, a publicly well-

known binary cancer classification dataset was used, which is the prostate cancer dataset 

published by (Singh et al., 2002). It consists of 102 samples of 52 prostate tumor samples 

and 50 non-tumor tissues, where each sample has 12600 genes. A subset of 5966 genes 

was adapted in the classification. In order to enable a fair comparison, typically, the 

dataset was randomly partitioned into a training dataset, which comprised 70% of the 

samples, and a test dataset, which consisted of 30% of the samples. The partition repeated 

50 times. In order to get the best value of the pair 1 2( , )  , the 10-fold CV was employed 

using the training dataset. All the applications were conducted in R using the glmnet 

package. 

 

Table 2 shows the median number of explanatory variables selected by each of the 

AAEN, AEN, and elastic net in the training data set, and the corresponding median MEt. 

It can be seen that AAEN performs best in term of prediction error where the MEt of the 

AAEN is approximately 3.73% lower than AEN and 6.39% lower than elastic net. 

Moreover, AAEN selects less explanatory variables than the other two methods. 

7.   Conclusion 

A study of adjusted elastic net was proposed by applying on logistic regression model. 

AAEN and AEN with elastic net were compared by using simulation studies and real data 

application. Both the simulation and real data results show that the AAEN and AEN are 

outperforming the elastic net in terms of MEt of test data and variable selection accuracy. 

We can conclude that AAEN and AEN more reliable for grouping effects when there are 
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broader ranges of correlation between variables in applying penalized logistic regression 

model. 
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Figure 1:   Comparison of median MEt for three methods 
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Table 1: Comparison among methods over 50 replications for the simulation 

scenario  

 MEt (Std. Dev.) hits FP 

0.98   

    Elastic net 6.348 (2.010) 5 26.5 

    AEN 5.824 (1.766) 9 24.5 

    AAEN 5.785 (1.561) 8.5 23 

0.7   

    Elastic net 6.129 (1.856) 4 23 

    AEN 6.055 (1.735) 9 21.5 

    AAEN 5.953 (1.572) 9 21 

0.5   

    Elastic net 6.369 (1.891) 4 26 

    AEN 6.209 (1.831) 9 24.5 

    AAEN 5.899 (1.604) 9 24 

0.3   

    Elastic net 6.671 (2.146) 4 25 

    AEN 6.640 (1.896) 8 21.5 

    AAEN 6.202 (1.739) 9 20 

Table 2: Comparison among methods for the real dataset 

 MEt No. of  selected variables 

Elastic net 10.713 48 

AEN 10.417 44 

AAEN 10.028 42 

 


