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Abstract  
Inverted probability distributions find applications in various real – life situations including 
econometrics, survey sampling, biological sciences and life – testing. Closure under inversion 
implies that the reciprocal of a continuous random variable X has the same probability function as 
the original random variable, allowing for a possible change in parameter values. To date, only a 
very few probability distributions have been found to possess the closure property.  
 
In this paper, an attempt has been made to generate a class of distributions that are closed under 
inversion, and to develop some statistical properties of this class of distributions. 
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1.   Introduction 
Inverted probability distributions find applications in various real – life situations 
including econometrics, survey sampling, biological sciences, engineering 
sciences, and , most prominently, in life – testing. As such, various authors have 
derived a variety of inverted distributions, and have developed their statistical 
properties. 
 
Closure under inversion implies that the reciprocal of a continuous random 
variable X has the same probability function as the original random variable, 
allowing for a possible change in parameter values. In case the parameter values 
are identical to those of the original distribution, the random variable X (and its 
reciprocal) will be said to be Strictly Closed Under Inversion. 
 
To date, only a very few probability distributions have been found to possess the 
closure property. For example, the Cauchy (0, 1) distribution is closed under 
inversion in the strict sense, whereas the ( )21,F νν  distribution is closed in the 
generalized sense. 
 
In this paper, an attempt has been made to generate a class of distributions that 
are closed under inversion, and to establish some of the fundamental properties 
of this particular class of distributions. 
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2.   Closure Under Inversion 

Definition 
A probability density function f(x) will be said to be closed under inversion if the 
form of the probability density function of 1 / X is the same as that of f(x). In case 
the parameters of the inverted distribution are identical to those of the original 
distribution, the random variable X (and its reciprocal) will be said to be strictly 
closed under inversion. 

3.   A Class of Distributions that are Strictly Closed Under Inversion 
With reference to the development of a class of distributions that are Strictly 
Closed Under Inversion, we present the following theorem:  

Theorem 3.1 
Every function of the form 

f(x) =   k[ M[w(x).w(1/x)] ]/x        (3.1) 

defined on (a, 1/a), 0<a<1  

where   

(i) k is a non – zero real number, 
(ii) w represents an algebraic function of x    & 
(iii) M represents an algebraic function of w(x).w(1/x) 
 
such that 

a)   f(x) > 0 over its domain, and 
 
       1/a 
(b)   $f(x)dx = 1)   
       a 
 
represents a continuous probability distribution that is Strictly Closed Under 
Inversion. 
 
Proof 
Let Y = 1 / X;  

 
Then 
          modulus of dx / dy = 1 / y2 

When x -> a, y -> 1 / a  
When x -> 1 /a, y -> a 
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Hence 

h(y) = k[M[w(1/y).w(y)] ]y. 1/y2  = k[M[w(y).w(1/y)] ]/y,    a < y < 1/a 
------- exactly the same form as that of f(x) 
 
Hence the function given by (3.1) is Strictly Closed Under Inversion. 
 
As far as the point regarding f(x) being a proper pdf is concerned, any function of 
the form given by (3.1) will be a proper pdf as long as f(x) > 0 over its domain, 
and the integral of the function over its domain is convergent.  

Alternative Proof 
If the function f(x) is Strictly Closed Under Inversion, then it satisfies the 
functional equation 
  
    ff((xx))  ==  ff((11//xx))  //  xx22  

                            oorr          xxff((xx))  ==  ff((11//xx))  //xx  
  
NNooww  eeqq  ((33..11))  ccaann  bbee  wwrriitttteenn  aass    

        xxff((xx))  ==  k[ M[w(x).w(1/x)] ] 
 
Replacing x by 1/x, we obtain  

ff((11//xx))  //  xx  ==  k[ M[w(1/x).w(x)] ] 

==  k[ M[w(x).w(1/x)] ] 
 
Hence we have xf(x) = f(1/x) / x 

                    or   f(x) = f(1/x) / x2 

 

Hence the function f(x) given by (3.1) is Strictly Closed Under Inversion. 
 
Remarks 

1.  In the above, if we let a -> 0 + then the domain (a, 1/a) tends to (0, infinity). 
2.  If we let a -> 1, then 1/a -> 1 and f(x) is degenerate. (In other words, if a -> 1, 

f(x) is a one – point distribution located on x = 1.) 
 
Examples 
The class of SCUI distributions given by (3.1) encompasses a variety of 
probability density functions, some of which are presented in Table 1: 
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Table 1:   Some distributions belonging to the class of  
Probability Distributions Given by Equation (3.1) 

S #  Distribution  Remarks  

1. f(x) = 1/2ax         0a,exe aa ><<−  

Here  
          k = 1 / 2a 
 

          w(x) could be any function of x 
& 
       M = [ w(x).w(1/x) ]0 = 1 
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Here  
          k = 1 / sigma [sq rt of 2pi ] 
 

          w(y) = ln y 
so that w(1/y) = - ln y 
and 
w(y)w(1/y) = - ( ln y )2 
& 
M = exp{ [ w(y).w(1/y)/ 2 sigma2 ] 
 

3. 

The well – known  F distribution 
 with v1 = v2 = v 
 i.e. 

( ) ( ) ( )12
2g x x 1 x , 0 x

2

ν − −νΓ ν
= + < < ∞

ν⎡ ⎤⎛ ⎞Γ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

Here 
 
       ( )

( ) 2K

2

Γ ν
=

ν⎡ ⎤Γ⎣ ⎦

 

        ( ) ( )4 2w x x 1 x
ν ν−= +  

& 
           M = [ w(x).w(1/x)] 
 

4.  Some Properties Pertaining to the Quantiles of  
Scui distributions given by ( 3.1 ) 

Theorem 
For every pdf belonging to the class of SCUI distributions given by (3.1) above, 
the (1 – q)th quantile is the reciprocal of the qth quantile 
i.e.     

X 1 – q = 1 / X q        where 0 < q < 1 

Proof 
Let f(x) be a continuous SCUI distribution defined on [ a, 1/a ], 0 < a < 1. 
Then f(x) satisfies the functional equation 
   f(x) = f(1/x) / x2   

     for all x belonging to [a, 1/a ]. 
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Hence  
      Xq            Xq 
q = $ f(x)dx = $ f(1/x) / x2 dx     ……….. (2)  

      a              a 
Now, in the RHS of eq. (2), let Y = 1/X so that X = 1/Y. 
When x = a, y = 1/a 
When x = Xq, y = 1/Xq 
dx = - dy / y2 
 
Hence, eq (2) becomes 

     Xq              1/Xq 
q = $ f(x)dx = - $ [ y2 f(y) / y2 ] dy    a                         1/a 
          1/a    1/a 
        = $ f(y)dy= $ f(x)dx  ( dummy variable ) 
        1/Xq 1/Xq 
But  
      Xq                1/a     
q = $ f(x)dx  = $ f(x)dx 
      a              1/Xq 
means that  
  1 / X q  = X 1 – q  
Hence proved. 

Corollary No. 1 
For every pdf belonging to the class of SCUI distributions given by eq. (3.1) 
above, the median is equal to unity 
i.e.       ~ 
 X = X0.5  = 1  

Proof 
We know that, for every pdf belonging to the class of SCUI distributions given by 
eq. (3.1) above,      
 X1 – q = 1 / X q 
        where   < q < 1 
 
Putting q = 0.5, we obtain  
          X0.5 = 1/X0.5  
            => [X0.5 ]2 = 1  
                   => X0.5 = 1 
   (since X a positive random variable). 
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Remark 
The converse of this result is not generally true. There do exist continuous 
distributions that are defined on (0, infinity) and the median of which is unity but 
which are not Strictly Closed Under Inversion. 

Corollary No. 2 
For every pdf belonging to the class of SCUI distributions given by eq. (3.1)   
above, the area under the curve between Xq and 1/Xq is equal to 1 – 2q 
i.e. 
   P[ Xq < X < 1/Xq ] = 1-2q 

Proof: 
The proof is simple. 

Remark 
This result is somewhat comparable with the well – known result that, for a 
normal distribution with mean Mu and standard deviation Sigma: 
 

P[ Mu - Sigma  <  X  <  Mu + Sigma ]  = 0.6826 
 

P[ Mu – 2 Sigma < X < Mu + 2 Sigma ] = 0.9544 
 

P[ Mu – 3 Sigma < X < Mu +3  Sigma ] = 0. 9973 

5.    Some General Remarks 

RReemmaarrkk  NNoo..  11  
All of the above is true under Regularity Conditions such as absolute continuity, 
absolute differentiability, etc. 

RReemmaarrkk  NNoo..  22  
The class of distributions of non – negative random variables given in this paper 
is not exhaustive. There exists at least one probability density function that  
extends  from – infinity  to infinity and is  closed  under  inversion  i.e. the Cauchy 
(0, 1) distribution.  
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