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Abstract 

In this article, we propose a new heteroskedastic consistent covariance matrix estimator, HC6, which is 

based on deviance measure. We have studied the finite sample behavior of the test statistic based on this 

new HC estimator. We compare its performance with other HC estimators namely HC1, HC3 and HC4m, 

which are also used in case of leverage observations. Extensive simulation studies are used to study the 

effect of various levels of heteroskedasticity on the performance of the quasi tests based on HC estimators. 

Results showed that the test statistic based on new suggested estimator has better asymptotic approximation 

and have less size distortion in small samples especially when high level heteroskedasticity is present in the 

data. 

Keywords:  Regression, Heteroskedasticity, Deviance, Influential points, Covariance 

matrix estimation. 

1. Introduction 

In regression analysis, the presence of heteroskedasticity in the data leads to inefficient 

estimates of ordinary least square (OLS) estimates. In this situation the covariance matrix 

estimate of OLS estimates become biased and does not remain consistent. Thus the 

inconsistency of the covariance matrix fails to provide the asymptotically valid inference. 

The problem becomes more severe with the increased level of heteroskedasticity. In 

regression analysis, it is very common among practitioners to use the point estimates 

computed from OLS method even if they suspect the presence of heteroskedasticity in the 

data. However in order to perform inference about the parameters of the regression 

model, it is important to use a heteroskedasticity consistent estimate of covariance matrix.  

 

Several authors have suggested covariance matrix estimators which are consistent in case 

of both homoskedastic and heteroskedastic error variances. The most commonly used 

heteroskedastic consistent estimator was suggested by White (1980), named as HC0. This 

estimator is widely used in literature but various studies showed that HC0 can be severely 

biased for small samples. It tends to underestimate the true variance which in turn results 

in poor performance of associated quasi t-statistic see, e.g MacKinnon and White (1985), 

Cribari-Neto and Zarkos (1999), Cribari-Neto and Zarkos (2001). MacKinnon and White 
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(1985), Suggested alternative HCCMEs called HC1, HC2. Later Davidson and 

MacKinnon (1993) suggested another alternative estimator, called as HC3, which is an 

approximation of the jackknife estimator. The simulation results in Long and Ervin 

(2000) showed that HC3 performed the best among the other available such estimators. 

Cribari-Neto and Zarkos (2001) showed that the presence of high leverage observation is 

more critical for HCCMEs. So Cribari-Neto (2007) proposed a new version of the 

HCCME called as HC4. Their numerical results showed that the inference about 

regression parameter using HC4 is more reliable but it showed large amount of bias. Later 

Cribari-Neto et al., (2007), Cribari-Neto and da Silva (2011) suggested two new versions 

of HCCMEs denoted as HC5 and HC4m, which have lesser bias relative to HC4.  In this 

article we propose a new estimator, called as HC6. It performs well in case of small 

sample especially when heteroskedasticity level is high. The simulations results show that 

quasi t-test for the inference about regression parameters based on new estimator has 

better approximation of asymptotic distribution when heteroskedasticity is high and 

sample size is small. 

 

The rest of the paper is organized as follows: we introduce the model and covariance 

matrix estimators in Section 2. In section 3, we propose a new HCCME, HC6, based on 

measure of deviance. The results and discussion are reported in Section 4. In Section 5, 

we study the application to real life data. The concluding remarks are given in Section 6. 

2. The Model and Estimators 

The regression model considered is, 

εXβY           (1) 

where, X  is the n × k matrix of independent variables, Y is n × 1 vector of dependent 

variable and   is the n × 1 column vector of error term and ),...,,( 110  k
 
is the 

vector of parameters need to be estimated. We assume that ),0(~ 2

ii N  , with 

nii ,...,2,1),0( 2   and E( ji  , ) = 0, for all i ≠ j. Thus Ω)var( , where, 

),...,,( 22

2

2

1 ndiag Ω
       

(2) 

 

OLS estimate of    is defined as, 

,)( 1
YXXXβ

TT 


        (3) 

 

Such that  )(


E  and T
PΩPψ )(var 


, where  

TT
XXXP

1)(          (4) 
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 is the vector of OLS residuals. 
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The commonly used HCCME called HC0 was given by Eicker (1963) and (White, 1980), 

is given as, 
TPΩP


0HC         (5) 

 

Where,
 

),...,,( 21 ndiag 


Ω , White (1980) proposed this estimator to resolve the 

problem of estimation and inference in the presence of heteroskedasticity. This estimator 

proved to be consistent, in various studies, when nothing is known about the form of 

heteroskedasticity see e.g Arce and Mora (2002). HC0 as discussed in Section 1 can be 

seriously biased for small samples. There are some alternatives to the estimator of 

(White, 1980), available the in literature. These estimators are proposed to control the 

tendency of underestimation of the variance of the OLS estimates. These alternative 

estimators are found to be consistent under heteroskedasticity and incorporates small 

sample adjustment factors see e.g Cribari-Neto and Zarkos (1999), Cribari-Neto and 

Zarkos (2004), Davidson and MacKinnon (1993), but none of these work well in the 

scenario discussed in this paper i.e. small sample size with high level of 

heteroskedasticity. 
 

According to the MacKinnon and White (1985), HC0 does not take into account the well 

known fact that the OLS residuals tend to be very small. They used a modified estimator 

of HC0 which they obtained by using the degree of freedom correction similar to one 

conventionally used to obtain unbiased estimate of variance denoted by σ
2
. This yields 

the modified estimator HC1 suggested by Hinkley (1977) defined as, 

T
PΩPE


11 HC         (6) 

 

Where, IE1
kn

n


  is called the finite correction factor, where k denotes the number of 

parameters and In is n × n identity matrix.  But according to them degree of freedom 

adjustment in HC1 is not the only way to compensate for the fact that the OLS residuals 

tend to underestimate the true errors. So following the Horn et al., (1975) they proposed 

another estimator called HC2 defined as,  

T
PΩPE


22 HC         (7) 

 

Where, ))1/(1( iihdiag 2E  and nihii ,...,2,1,  , where, 10  iih  denote the i
th

  diagonal 

value of the hat matrix H.  These hii values in H are called the leverage of the i
th

 X 

observation and indicate whether or not a value in X is outlying. The hii measures the 

distance between i
th

 values of X from the mean of all n values. So when hii takes a large 

value closer to 1, it indicates that the i
th

 value is distant from mean and has large leverage. 

In general a diagonal value of the hat matrix H greater then 2k/n from the other data 

points in the diagonal is considered as leverage observation see e.g (Montgomery et al., 

2001, p.207).  

 

The HC3 given by Davidson and MacKinnon (1993) can be written as, 

TPΩPE


33 HC         (8) 

where, nihdiagE ii ,...,2,1);)1/(1( 2

3  .  The estimators, HC2 and HC3, include the finite 

sample correction factors that are based upon the leverages of different observations, 
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greater the leverage, more inflated will be the corresponding squared residuals see e.g 

Cribari-Neto and da Silva (2011). The resulting quasi-t tests tend to be quite liberal when 

the design matrix includes high leverage observations, thus leading to imprecise 

inference. So Cribari-Neto and Zarkos (2004), proposed a new estimator denoted by HC4 

that takes into account the impact of high leverage points on the finite-sample behavior of 

the covariance matrix estimator. The HC4 estimator is given as, 

T
PΩPE


44 HC         (9) 

where, ))1/(1(4
i

iihdiagE


  
and niknhiii ,...,2,1;)/)(,4(min  .  The exponent 
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the level of discounting for i
t h

 observation and is given by the ratio between 
iih and h ,    
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


n

i
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n

h
1

1
. Since 10  iih  and 1i  it follows that 1)1(0  i

iih
 . Hence, the i

th
 

squared residual will be more strongly inflated when hii is large relative to ¯h.  HC4 aims 

at discounting for leverage points more heavily than HC2 and HC3.  Cribari-Neto and da 

Silva (2011) showed that the asymptotic approximation of the HC4 is very poor so that 

they suggested a modified version of HC4, denoted by HC4m, given as, 

T

4m PΩPE


mHC 4         (10) 

Where, ))1/(1( i

iim hdiag


4E  and }/)(,min{}/)(,min{ 21 knhknh iiiii  
 

for ni ,...,2,1 .  

The values for γ1 and γ2 are selected in such a way that it will be helpful in reducing the 

effect of leverage observation. The values suggested by Cribari-Neto and da Silva (2011) 

are γ1 = 1.0 and γ2 = 1.5 and same values are used in our simulations.  

3. New Estimator 

As we have discussed in Section 1 and 2 that all the alternative estimators of HC0 take 

into account only the effect of leverage observation or the extreme values in the design 

matrix X. In practice, whenever we have leverage points there also exist some influential 

observations in the Y variable which affect the results of the variance covariance matrix 

of the OLS estimates. All the modified versions of HC0 use leverage measure to rescale 

the OLS residuals involve in the estimation sandwich estimator to control the 

underestimation of the covariance matrix. But the leverage measure does not consider the 

effect of influential observations. Now in order to consider the effect of both leverage and 

influential observations in the estimation of variance covariance matrix we propose a new 

estimator denoted by HC6 given as, 

TPΩPE


66 HC         (11) 
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for ni ,...,2,1 . where k 

is the number of parameters, ri is the studentized residual, hii is the leverage measure for 

the i
th

 observation and ei are the OLS residuals. It can be noticed that apart from the factor 

k, dii is the product of i
th

 squared studentized residual and the factor hii/(1 − hii). Thus dii 

is made up of a component that reflects how well the model is fitted to the i
th

 observation 

yi and a component that measures the distance of the i
th

 observation from the rest of the 

data, see e.g. (Montgomery et al., 2001). The diagonal elements of E6,  dii, behave like hii 

but unlike hii, it can take value greater than one, when both the leverage and the 
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influential observations are present at same point. That is why, dii is used to detect the 

influential observations in the data. The most interesting feature of E6 is that it takes into 

account the effect of outliers or extreme observations both in x-space and y-space, so 

when it is used to rescale the residuals it may improve the results of the covariance matrix 

estimator even when x-space have no extreme values but only y-space have  some or 

more extreme values. The value of dii will be larger if there are large values of X or Y or 

both in the data, so the i
th

 squared residuals will be more appropriately weighted when 

there are outliers of any type in the data. 

4. Results 

In order to evaluate the performance of the new suggested estimator, we compute its 

relative probability discrepancy (RPD), see e.g, Chand and Aftab (2012), Davidson and 

MacKinnon (1998). Simulation study is performed following design given in Cribari- 

Neto and da Silva (2011). The numerical results which are stated in this section are 

obtained using the heteroskedastic regression model given as: 

niXXX ikikii ,...,2,1,...Y 33221i      (12) 

 

Here ),0(~ 2

ii N   
and jiforE ji  0)(  . The error variance  2

i  is defined as 







1

1

2 exp
k

j

ijji X for ni ,...,2,1  and kj ,...,2,1 . Where k is defined as the number of 

parameters in the model and αj being the real scalar used to control the level of 

heteroskedasticity. In the simulation study, we used the model defined in (12) with k = 3 

i-e with three regression parameters. Different choices of the sample size are being 

studied i.e n = 50, 100 and 150 for different values of α given as, α = 0, α = 0.26, α = 1.5, 

α = 2 and α = 2.5. The sample sizes are selected with the intuition that heteroskedasticity 

is more problematic in small samples. In case of large samples all the sandwich 

estimators perform equally well, see e.g Cribari- Neto et al., (2007), Cribari-Neto (2004), 

Cribari-Neto and da Silva (2011). When the sample size is sufficiently large one can 

easily use the usual HC0 estimator. The values of α are selected in order to consider the 

homoskedasticity (α = 0) and various levels of heteroskedasticity, low level 

heteroskedasticity (α = 0.26), high level heteroskedasticity, (α = 1.5) and severe level of 

heteroskedasticity, (α = 2.5). The values of the covariates are obtained as random draws 

from the standard lognormal distribution to make the data heteroskedastic. The level of 

heteroskedasticity can be measured using λ = max( 2

i  )/min( 2

i ). When λ = 1 it denoted 

that there is no heteroskedasticity and when λ > 1 it implies that the heteroskedasticity is 

present. The larger values of λ indicate the higher level of heteroskedasticity. When  

α = 0.26 then λ is approximately equals to 60, for α = 1.5, λ is approximately equals to 90, 

when α = 2, λ is approximately equals to 150 and finally when α = 2.5 the value of the λ 

is greater than or equals to 190.  

 

In this study, we want to test the hypothesis H0 :  β2 = 0 against the two sided alternative 

hypothesis H1: β2  ≠ 0. The test statistic used is 

)ˆvar(

ˆ

2

2

22




           (13) 
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where 
2̂  denote the OLS estimate of β2 and )ˆvar( 2  is variance estimate of 

2̂  and it is 

based on HC1, HC3, HC4m and HC6 estimators. The number of Monte Carlo runs are set 

to 10, 000. All the simulation results are performed using the R programming language, 

see (R Development Core Team, 2011). In this study, we consider only heteroskedastic 

errors with high leverage and influential observations. 

 

Table 1 presents the empirical probabilities of quasi t-test based on the considered 

HCCMEs. We study the effect of level of heteroskedasticity on the approximation of 

asymptotic distribution of quasi t-test for different choices of sample size, ranging from 

small to large sample size. 

Table 1:  Empirical probabilities, when the test statistic is computed using 

variances of HC1, HC3, HC4m and HC6 estimators 

n n=50 n=100 n=150 

γ 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99 

α=0 

HC1 0.805 0.869 0.941 0.832 0.891 0.955 0.8416 0.9007 0.9605 

HC3 0.886 0.929 0.971 0.884 0.93 0.975 0.8906 0.9365 0.9777 

HC4m 0.902 0.938 0.977 0.896 0.938 0.978 0.9011 0.9437 0.9804 

HC6 0.551 0.619 0.727 0.534 0.61 0.717 0.5191 0.5914 0.6995 

α=0.25 

HC1 0.599 0.683 0.808 0.642 0.745 0.874 0.685 0.797 0.908 

HC3 0.881 0.925 0.968 0.893 0.938 0.978 0.916 0.955 0.984 

HC4m 0.909 0.942 0.976 0.914 0.951 0.984 0.932 0.964 0.988 

HC6 0.681 0.758 0.853 0.802 0.861 0.929 0.862 0.909 0.954 

α=1.5 

HC1 0.628 0.747 0.861 0.724 0.838 0.924 0.777 0.881 0.949 

HC3 0.97 0.986 0.996 0.983 0.994 0.999 0.985 0.996 0.999 

HC4m 0.98 0.991 0.997 0.988 0.996 0.999 0.989 0.997 0.999 

HC6 0.875 0.92 0.963 0.955 0.975 0.991 0.976 0.988 0.995 

α=2 

HC1 0.647 0.759 0.866 0.747 0.846 0.952 0.8 0.891 0.949 

HC3 0.981 0.991 0.997 0.988 0.995 0.999 0.99 0.997 0.999 

HC4m 0.987 0.994 0.998 0.992 0.997 0.999 0.993 0.998 1.000 

HC6 0.895 0.939 0.968 0.961 0.979 0.991 0.982 0.992 0.996 

α=2.5 

HC1 0.649 0.761 0.877 0.75 0.85 0.924 0.807 0.891 0.955 

HC3 0.983 0.994 0.998 0.988 0.996 0.999 0.992 0.998 0.999 

HC4m 0.989 0.996 0.999 0.993 0.998 0.999 0.995 0.998 0.999 

HC6 0.896 0.939 0.975 0.967 0.982 0.993 0.986 0.993 0.998 

 

We have considered asymptotic probabilities γ = 0.90, 0.95 and 0.99 corresponding to 

10%, 5% and 1% levels of significance which are common choices in statistical 

inference. It can be observed from Table 1 that when there is no heteroskedasticity the 

approximation of HC1, HC3 and HC4m is better and HC6 has relatively poor 

approximation. The reason behind the poor approximation of the test using HC6 is due to 
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the use of deviance measure as correction matrix which is specifically suggested to deal 

with the influential observation. So it is not recommended to use it in case of 

homoskedasticity. Next when the heteroskedasticity is present and is mild, α = 0.26, the 

quasi t-test based on HC4m has good approximation of asymptotic distribution. In this 

scenario, the size of quasi t-test based on new suggested estimator is larger than that of 

the asymptotic distribution. This distortion of size is larger when the sample size is small. 

The test based on HC1 is showing the largest discrepancy in size.  

 

Moreover, when the level of heteroskedasticity increases and the sample size is small, the 

test based on HC6 outperforms the other estimators. While for large sample size and high 

level of heteroskedasticity all the estimators, except HC1, have shown similar behavior. 

The empirical distribution of these tests has shown heavier right tail as compared to that 

of the asymptotic distribution.  These results show that for small sample size the quasi-t 

test based on HC1, HC3 and HC4m under the high level of heteroskedasticity could be 

substantially unreliable and misleading. The quasi t-test for the inference about regression 

coefficient based on the HC6 estimator has better asymptotic approximation for high level 

heteroskedasticity with small sample size. 

      
                n=50, α=0.26                              n=50  , α=2.5  

          
n=150, α=0.26                                          n=150, α=2.5 

Figure 1: Relative probability discrepancy (RPD) versus asymptotic probabilities(γ); 

With k = 3 
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Figure 1 showed the plots of relative probability discrepancy (RPD) against the 

asymptotic probability of the asymptotic distribution of quasi t-test based on HC1, HC3, 

HC4m and HC6. Usually, we are interested in studying the relative probability discrepancy 

when γ > 0.8. So we will discuss the results specifically for this situation. It can be 

observed that for sample size when the level of heteroskedasticity is low, HC3 and HC4m 

have smaller relative probability discrepancy. The situation totally changes  when the 

level of heteroskedasticity is high. The relative probability discrepancy of test based on 

HC6 decreases in presence of high level heteroskedasticity. While this is the case which 

adversely affects the asymptotic approximation of HC3 and HC4m. For large sample size, 

all the three tests, HC3, HC4m and HC6, have shown same amount of relative probability 

discrepancy especially when γ > 0.7. The behavior of HC1 is generally poor in all the 

considered scenarios. 

5. Application to Real data  

In this section, we apply the quasi t-test for the hypothesis testing of the significance of 

regression coefficient. The test is applied under the new suggested estimator HC6 and 

comparison has been made with HC1, HC3, HC4m. The data has been taken from Greene 

(1997, p.541). This same data set has already been studied in literature see e.g. Cribari-

Neto( 2004), Cribari-Neto et al., (2007) and Cribari-Neto and Zarkos (2004). In this data, 

the per capita spending on public schools (y) is the response variable while the per capita 

income of the state (x) is independent variable. The data set consist of 50 observations 

excluding missing observations. 

 

The regression model which is estimated for this data is, 

50,...,2,1,Y 2

12110i  iXX iii      (14) 

 

This is the same model studied by Cribari- Neto et al.,(2007). The OLS estimates of the 

model 9.832ˆ o , 2.1834ˆ
1  , 0.1587ˆ

2  . The Breusch-pagan test (LM = 18.9035,  

p.value < 0.001) shows the presence of heteroskedasticity. We wish to test the null 

hypothesis H0: β2 = 0 against H1: β≠0. 

Table 2:  Test of heteroskedasticity H0: β2 = 0 Breusch-Pagan test of 

heteroskedasticity 

Test LM d.f p-value 

 Breusch Pagan 18.903 2 0:000   

Testing of H0 :  β2 = 0 against H1 :  β2 ≠ 0 

Test S.E T p-value 

 OLS 519.1 3.06 0.0036 

 HC1 856.1 1.85 0.0700 

 HC3 1995.2 0.8 0.4303 

 HC4m 2553.3 0.62 0.5372 

 HC6 1146.2 1.38 0.1727 

  

From the results given in Table 2 it can be noticed that the test on the OLS standard error 

rejects the null hypothesis even at 1% level of significance. Same is the case for HC1 
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which rejects the null hypothesis at 10% level of significance. While the test based on 

other HCCMEs, i.e. HC3, HC4m and HC6, we are unable to reject the null hypothesis even 

at 10% level of significance. Hence from these results it can be concluded that, the test 

statistic based on the HC6 estimator will give reliable inference in real life data. 

6. Conclusion  

In this article we propose a new HC estimator, called HC6, which used the deviance 

measure to rescale the residuals. The numerical results suggest that, when the level of 

heteroskedasticity is very high and sample size is small, the test based on HC6 estimator 

have better approximation of asymptotic distribution. We recommend using newly 

suggested estimator instead to other HCCMEs, especially when the sample size is small. 

We study the estimator only under normal distribution with heteroskedastic disturbances 

it can also be studied assuming heteroskedasticity under some non normal distribution of 

the error term. 
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