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Abstract

In this article, we propose a new heteroskedastic consistent covariance matrix estimator, HCg, which is
based on deviance measure. We have studied the finite sample behavior of the test statistic based on this
new HC estimator. We compare its performance with other HC estimators namely HC;, HC; and HCyy,,
which are also used in case of leverage observations. Extensive simulation studies are used to study the
effect of various levels of heteroskedasticity on the performance of the quasi tests based on HC estimators.
Results showed that the test statistic based on new suggested estimator has better asymptotic approximation
and have less size distortion in small samples especially when high level heteroskedasticity is present in the
data.

Keywords: Regression, Heteroskedasticity, Deviance, Influential points, Covariance
matrix estimation.

1. Introduction

In regression analysis, the presence of heteroskedasticity in the data leads to inefficient
estimates of ordinary least square (OLS) estimates. In this situation the covariance matrix
estimate of OLS estimates become biased and does not remain consistent. Thus the
inconsistency of the covariance matrix fails to provide the asymptotically valid inference.
The problem becomes more severe with the increased level of heteroskedasticity. In
regression analysis, it is very common among practitioners to use the point estimates
computed from OLS method even if they suspect the presence of heteroskedasticity in the
data. However in order to perform inference about the parameters of the regression
model, it is important to use a heteroskedasticity consistent estimate of covariance matrix.

Several authors have suggested covariance matrix estimators which are consistent in case
of both homoskedastic and heteroskedastic error variances. The most commonly used
heteroskedastic consistent estimator was suggested by White (1980), named as HCy. This
estimator is widely used in literature but various studies showed that HC, can be severely
biased for small samples. It tends to underestimate the true variance which in turn results
in poor performance of associated quasi t-statistic see, e.g MacKinnon and White (1985),
Cribari-Neto and Zarkos (1999), Cribari-Neto and Zarkos (2001). MacKinnon and White
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(1985), Suggested alternative HCCMEs called HC;, HC,. Later Davidson and
MacKinnon (1993) suggested another alternative estimator, called as HC3, which is an
approximation of the jackknife estimator. The simulation results in Long and Ervin
(2000) showed that HC3 performed the best among the other available such estimators.
Cribari-Neto and Zarkos (2001) showed that the presence of high leverage observation is
more critical for HCCMEs. So Cribari-Neto (2007) proposed a new version of the
HCCME called as HC4. Their numerical results showed that the inference about
regression parameter using HC,4 is more reliable but it showed large amount of bias. Later
Cribari-Neto et al., (2007), Cribari-Neto and da Silva (2011) suggested two new versions
of HCCMEs denoted as HCs and HCyy,, Which have lesser bias relative to HC,4. In this
article we propose a new estimator, called as HCg. It performs well in case of small
sample especially when heteroskedasticity level is high. The simulations results show that
quasi t-test for the inference about regression parameters based on new estimator has
better approximation of asymptotic distribution when heteroskedasticity is high and
sample size is small.

The rest of the paper is organized as follows: we introduce the model and covariance
matrix estimators in Section 2. In section 3, we propose a new HCCME, HCg, based on
measure of deviance. The results and discussion are reported in Section 4. In Section 5,
we study the application to real life data. The concluding remarks are given in Section 6.

2. The Model and Estimators
The regression model considered is,
Y =XB+¢g 1)

where, X is the n x k matrix of independent variables, Y is n x 1 vector of dependent
variable and ¢ is the n x 1 column vector of error term and S=(8,,/4,,... B.,) is the

vector of parameters need to be estimated. We assume thate, ~N(0,57), with

(0<o? <),i=12,.,Nn and E(&i,€;) =0, forall i #/. Thus var(e) =, Where,

Q=diag (07,07,...,07) )

OLS estimate of £ is defined as,

B=(X"X)'X"Y, (3)

Such that E(8) = andvar (8)=y =P QP", where

P=(X"X)"*X' 4)
and Q as defined in (2). When the assumption of constant error variances is satisfied, the
variance is defined as o?(X"X)*and it is estimated as 6*(X"X)*, where ¢° =¢'¢/(n—k) and
e=(1, = X(X"X)*X)Y = (I, —H)Y is the vector of OLS residuals.
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The commonly used HCCME called HC, was given by Eicker (1963) and (White, 1980),
is given as,

HC, = PQP’ (5)

Where, Q=diag (&,,&,,+&,), White (1980) proposed this estimator to resolve the

problem of estimation and inference in the presence of heteroskedasticity. This estimator
proved to be consistent, in various studies, when nothing is known about the form of
heteroskedasticity see e.g Arce and Mora (2002). HC, as discussed in Section 1 can be
seriously biased for small samples. There are some alternatives to the estimator of
(White, 1980), available the in literature. These estimators are proposed to control the
tendency of underestimation of the variance of the OLS estimates. These alternative
estimators are found to be consistent under heteroskedasticity and incorporates small
sample adjustment factors see e.g Cribari-Neto and Zarkos (1999), Cribari-Neto and
Zarkos (2004), Davidson and MacKinnon (1993), but none of these work well in the
scenario discussed in this paper i.e. small sample size with high level of
heteroskedasticity.

According to the MacKinnon and White (1985), HC, does not take into account the well
known fact that the OLS residuals tend to be very small. They used a modified estimator
of HC, which they obtained by using the degree of freedom correction similar to one
conventionally used to obtain unbiased estimate of variance denoted by o°. This yields
the modified estimator HC; suggested by Hinkley (1977) defined as,

HC, = PE,QP" (6)

Where, g __1_ is called the finite correction factor, where k denotes the number of
n—k

parameters and I, is n x n identity matrix. But according to them degree of freedom

adjustment in HC; is not the only way to compensate for the fact that the OLS residuals

tend to underestimate the true errors. So following the Horn et al., (1975) they proposed

another estimator called HC, defined as,

HC, = PE,QP" ©)

Where, E,=diag (1/(1-h,)) and h. i=12..n, where, O<h, <1 denote the i" diagonal

value of the hat matrix H. These h;; values in H are called the leverage of the i X
observation and indicate whether or not a value in X is outlying. The h;; measures the
distance between i values of X from the mean of all n values. So when h;; takes a large
value closer to 1, it indicates that the i value is distant from mean and has large leverage.
In general a diagonal value of the hat matrix H greater then 2k/n from the other data
points in the diagonal is considered as leverage observation see e.g (Montgomery et al.,
2001, p.207).

The HC; given by Davidson and MacKinnon (1993) can be written as,
HC, = PE. QP (8)

where, E, =diag(l/(1-h,)?);i=12,..., n. The estimators, HC, and HCs, include the finite
sample correction factors that are based upon the leverages of different observations,
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greater the leverage, more inflated will be the corresponding squared residuals see e.g
Cribari-Neto and da Silva (2011). The resulting quasi-t tests tend to be quite liberal when
the design matrix includes high leverage observations, thus leading to imprecise
inference. So Cribari-Neto and Zarkos (2004), proposed a new estimator denoted by HC,4
that takes into account the impact of high leverage points on the finite-sample behavior of
the covariance matrix estimator. The HC,4 estimator is given as,

HC, = PE,QP" 9)
where, E, =diag (1/(1-h,)%) and & =min (4,(nh;)/k);i=12..,n. The exponent &, controls
the level of discounting for i'" observation and is given by the ratio between h. and h

where ﬁ=12hi. Since 0<h, <1 and g1 it follows that 0<(1-h,)* <1. Hence, the i"
N5z

squared residual will be more strongly inflated when hii is large relative to h. HC, aims
at discounting for leverage points more heavily than HC, and HC3. Cribari-Neto and da
Silva (2011) showed that the asymptotic approximation of the HC, is very poor so that
they suggested a modified version of HC,4, denoted by HCyn, given as,

HC, =PE, QP' (10)

Where, E, =diag 1/(1—h,)%) and & =min{y,(nh,)/K}+min{y, (nh.)/K} fori=12,..n.
The values for y; and y, are selected in such a way that it will be helpful in reducing the

effect of leverage observation. The values suggested by Cribari-Neto and da Silva (2011)
are y; = 1.0 and y, = 1.5 and same values are used in our simulations.

3. New Estimator

As we have discussed in Section 1 and 2 that all the alternative estimators of HC, take
into account only the effect of leverage observation or the extreme values in the design
matrix X. In practice, whenever we have leverage points there also exist some influential
observations in the Y variable which affect the results of the variance covariance matrix
of the OLS estimates. All the modified versions of HC, use leverage measure to rescale
the OLS residuals involve in the estimation sandwich estimator to control the
underestimation of the covariance matrix. But the leverage measure does not consider the
effect of influential observations. Now in order to consider the effect of both leverage and
influential observations in the estimation of variance covariance matrix we propose a new
estimator denoted by HC; given as,

HC, = PE,QP" (11)
2 2

Where, E, =diag (/d;) and d; _ nd r’ i for i=12,.,n. where k

k(l_hii)a ' s*(1-hy)
is the number of parameters, r; is the studentized residual, h;; is the leverage measure for
the i observation and e; are the OLS residuals. It can be noticed that apart from the factor
k, dii is the product of i squared studentized residual and the factor hii/(1 — h;}). Thus d;
is made up of a component that reflects how well the model is fitted to the i" observation
yiand a component that measures the distance of the i observation from the rest of the
data, see e.g. (Montgomery et al., 2001). The diagonal elements of Eg, d;i, behave like h;;
but unlike h;, it can take value greater than one, when both the leverage and the
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influential observations are present at same point. That is why, d;; is used to detect the
influential observations in the data. The most interesting feature of Eg is that it takes into
account the effect of outliers or extreme observations both in x-space and y-space, so
when it is used to rescale the residuals it may improve the results of the covariance matrix
estimator even when x-space have no extreme values but only y-space have some or
more extreme values. The value of d;; will be larger if there are large values of X or Y or
both in the data, so the i squared residuals will be more appropriately weighted when
there are outliers of any type in the data.

4. Results

In order to evaluate the performance of the new suggested estimator, we compute its
relative probability discrepancy (RPD), see e.g, Chand and Aftab (2012), Davidson and
MacKinnon (1998). Simulation study is performed following design given in Cribari-
Neto and da Silva (2011). The numerical results which are stated in this section are
obtained using the heteroskedastic regression model given as:

Y =B+ B Xo + B X+t B X +& , 1=12,..,n (12)

2

Here & ~N(0,07) and E(se,)=0fori=j. The error variance o is defined as

ol —op kia,-xi,» for i=12,..n and j=12,..,k. Where k is defined as the number of
j=1
parameters in the model and ¢; being the real scalar used to control the level of
heteroskedasticity. In the simulation study, we used the model defined in (12) with k = 3
i-e with three regression parameters. Different choices of the sample size are being
studied i.e n = 50, 100 and 150 for different values of a given as, a =0, a = 0.26, o = 1.5,
a =2 and a = 2.5. The sample sizes are selected with the intuition that heteroskedasticity
is more problematic in small samples. In case of large samples all the sandwich
estimators perform equally well, see e.g Cribari- Neto et al., (2007), Cribari-Neto (2004),
Cribari-Neto and da Silva (2011). When the sample size is sufficiently large one can
easily use the usual HC, estimator. The values of « are selected in order to consider the
homoskedasticity (¢ = 0) and various levels of heteroskedasticity, low level
heteroskedasticity (a« = 0.26), high level heteroskedasticity, (« = 1.5) and severe level of
heteroskedasticity, (o = 2.5). The values of the covariates are obtained as random draws
from the standard lognormal distribution to make the data heteroskedastic. The level of

heteroskedasticity can be measured using A = max(o? )/min(o?). When 4 = 1 it denoted

that there is no heteroskedasticity and when 4 > 1 it implies that the heteroskedasticity is
present. The larger values of 4 indicate the higher level of heteroskedasticity. When
a = 0.26 then /1 is approximately equals to 60, for « = 1.5, 4 is approximately equals to 90,
when a = 2, 4 is approximately equals to 150 and finally when o = 2.5 the value of the 4
is greater than or equals to 190.

In this study, we want to test the hypothesis Ho: S, = 0 against the two sided alternative
hypothesis Hi: > # 0. The test statistic used is

2 _ ﬁzz 13
© T Var(g,) &)
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where g3, denote the OLS estimate of /5, and var(/3,) is variance estimate of 3, and it is
based on HC;, HC3, HCy4, and HCg estimators. The number of Monte Carlo runs are set
to 10, 000. All the simulation results are performed using the R programming language,
see (R Development Core Team, 2011). In this study, we consider only heteroskedastic
errors with high leverage and influential observations.

Table 1 presents the empirical probabilities of quasi t-test based on the considered
HCCMEs. We study the effect of level of heteroskedasticity on the approximation of
asymptotic distribution of quasi t-test for different choices of sample size, ranging from
small to large sample size.

Table 1: Empirical probabilities, when the test statistic is computed using
variances of HC;, HC3, HC4y, and HCg estimators

n n=50 n=100 n=150
0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99
o=0

HC,; 0.805 0.869 0941 0.832 0.891 0.955 0.8416 0.9007 0.9605

HC; 0.886 0929 0971 0884 093 0.975 0.8906 0.9365 0.9777

HCsn 0.902 0.938 0.977 0.896 0.938 0.978 0.9011 0.9437 0.9804

HCe¢ 0551 0.619 0727 0534 061 0.717 0.5191 0.5914 0.6995
0=0.25

HC, 0599 0.683 0.808 0.642 0.745 0.874 0.685 0.797 0.908

HC; 0.881 0925 0968 0.893 0938 0.978 0.916 0.955 0.984

HCsn 0.909 0942 0976 0914 0951 0.984 0.932 0.964 0.988

HCs¢ 0.681 0.758 0.853 0.802 0.861 0.929 0.862 0.909 0.954
o=1.5

HC, 0.628 0.747 0.861 0.724 0838 0924 0.777 0.881 0.949

HC; 097 0986 0.996 0983 0.994 0.999 0985 0.996 0.999

HCsm 098 0991 0997 0988 0996 0.999 0.989 0.997 0.999

HCs 0.875 092 0963 0.955 0975 0.991 0.976 0.988 0.995

o=2

HC, 0.647 0.759 0.866 0.747 0.846 0.952 0.8 0.891 0.949

HC; 0.981 0.991 0.997 0988 0995 0999 0.99 0.997 0.999

HCsn 0.987 0.994 0.998 0.992 0997 0.999 0.993 0.998 1.000

HCe 0.895 0939 0968 0961 0979 0991 0.982 0.992 0.996
0=2.5

HC, 0.649 0.761 0.877 0.75 0.85 0924 0.807 0.891 0.955

HC; 0.983 0.994 0998 0988 0996 0999 0.992 0.998 0.999

HCsn 0.989 0.996 0.999 0.993 0.998 0.999 0.995 0.998 0.999

HCe 0.896 0.939 0975 0967 0982 0993 0.986 0.993 0.998

We have considered asymptotic probabilities y = 0.90, 0.95 and 0.99 corresponding to
10%, 5% and 1% levels of significance which are common choices in statistical
inference. It can be observed from Table 1 that when there is no heteroskedasticity the
approximation of HC;, HC3; and HCyy is better and HCg has relatively poor
approximation. The reason behind the poor approximation of the test using HCs is due to
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the use of deviance measure as correction matrix which is specifically suggested to deal
with the influential observation. So it is not recommended to use it in case of
homoskedasticity. Next when the heteroskedasticity is present and is mild, a = 0.26, the
quasi t-test based on HC4n has good approximation of asymptotic distribution. In this
scenario, the size of quasi t-test based on new suggested estimator is larger than that of
the asymptotic distribution. This distortion of size is larger when the sample size is small.
The test based on HC; is showing the largest discrepancy in size.

Moreover, when the level of heteroskedasticity increases and the sample size is small, the
test based on HCg outperforms the other estimators. While for large sample size and high
level of heteroskedasticity all the estimators, except HC;, have shown similar behavior.
The empirical distribution of these tests has shown heavier right tail as compared to that
of the asymptotic distribution. These results show that for small sample size the quasi-t
test based on HC;, HC3 and HCyy, under the high level of heteroskedasticity could be
substantially unreliable and misleading. The quasi t-test for the inference about regression
coefficient based on the HC¢ estimator has better asymptotic approximation for high level
heteroskedasticity with small sample size.
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Figure 1: Relative probability discrepancy (RPD) versus asymptotic probabilities(y),

Withk =3
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Figure 1 showed the plots of relative probability discrepancy (RPD) against the
asymptotic probability of the asymptotic distribution of quasi t-test based on HC4, HC3,
HC4m and HCg. Usually, we are interested in studying the relative probability discrepancy
when y > 0.8. So we will discuss the results specifically for this situation. It can be
observed that for sample size when the level of heteroskedasticity is low, HC; and HC4,
have smaller relative probability discrepancy. The situation totally changes when the
level of heteroskedasticity is high. The relative probability discrepancy of test based on
HCs decreases in presence of high level heteroskedasticity. While this is the case which
adversely affects the asymptotic approximation of HC3; and HCy,,. For large sample size,
all the three tests, HC3, HC,y, and HCg, have shown same amount of relative probability
discrepancy especially when y > 0.7. The behavior of HC; is generally poor in all the
considered scenarios.

5. Application to Real data

In this section, we apply the quasi t-test for the hypothesis testing of the significance of
regression coefficient. The test is applied under the new suggested estimator HCs and
comparison has been made with HC;, HC3, HC4y,. The data has been taken from Greene
(1997, p.541). This same data set has already been studied in literature see e.g. Cribari-
Neto( 2004), Cribari-Neto et al., (2007) and Cribari-Neto and Zarkos (2004). In this data,
the per capita spending on public schools (y) is the response variable while the per capita
income of the state (x) is independent variable. The data set consist of 50 observations
excluding missing observations.

The regression model which is estimated for this data is,
Y, =By + Xy + B, X2 +s , i=12,.,50 (14)

This is the same model studied by Cribari- Neto et al.,(2007). The OLS estimates of the
model f3,=832.9, j,=-1834.2, 3,=1587.0. The Breusch-pagan test (LM = 18.9035,

p.value < 0.001) shows the presence of heteroskedasticity. We wish to test the null
hypothesis Ho: £> = 0 against Hj: 0.

Table2: Test of heteroskedasticity Ho: f» = 0 Breusch-Pagan test of

heteroskedasticity
Test LM d.f p-value
Breusch Pagan 18.903 2 0:000
Testing of Hy: B> =0against H; : B, #0
Test S.E T p-value
OLS 519.1 3.06 0.0036
HC, 856.1 1.85 0.0700
HCs 1995.2 0.8 0.4303
HCsm 2553.3 0.62 0.5372
HCs 1146.2 1.38 0.1727

From the results given in Table 2 it can be noticed that the test on the OLS standard error
rejects the null hypothesis even at 1% level of significance. Same is the case for HC;
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which rejects the null hypothesis at 10% level of significance. While the test based on
other HCCMEs, i.e. HC3, HC4n, and HCg, we are unable to reject the null hypothesis even
at 10% level of significance. Hence from these results it can be concluded that, the test
statistic based on the HCg estimator will give reliable inference in real life data.

6. Conclusion

In this article we propose a new HC estimator, called HCg, which used the deviance
measure to rescale the residuals. The numerical results suggest that, when the level of
heteroskedasticity is very high and sample size is small, the test based on HCg estimator
have better approximation of asymptotic distribution. We recommend using newly
suggested estimator instead to other HCCMEs, especially when the sample size is small.
We study the estimator only under normal distribution with heteroskedastic disturbances
it can also be studied assuming heteroskedasticity under some non normal distribution of
the error term.

~
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