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Abstract 

Wind direction is the direction from which the wind is blowing. It is expressed in terms of degrees 

measured clockwise from geographical direction. The knowledge of the wind direction can be used to 

obtain information about the wind energy potential, dispersion of particulate matter in the air, the effects of 

engineering structures on the building, maritime study, and etc. This study provides a suitable model for the 

wind direction that indicates multi-modal distributional properties. A case study involves with a data from 

Kudat, Malaysia has been analysed. The statistical models known as a Finite Mixture of von Mises Fisher 

(mvMF) and Circular Distribution based on Nonnegative Trigonometric Sums (NNTS) has been fitted to 

the data. Then, the suitability of mvMF and NNTS models were judged based on a graphical representation 

and goodness-of-fit statistics. The results found that the mvMF model with 4H   components is 

sufficient to provide a best model.  

Keywords:  Circular statistics, Dominant direction, Environmental statistics, Multi-

modal distribution, Wind direction modelling. 

1.   Introduction 

Wind direction is known as a type of circular or directional data. Thus, it has unique 

characteristics that are different from standard linear data sets. Such distinctive features 

have made directional statistics analysis substantially different from linear analysis 

(Mardia and Jupp, 1999; Masseran, 2015). Let   be a random variable that measures the 

directional data that take values in the range 0° to 360° or 0 to 2 . An analysis of   

would depend on the selection of the starting point as the “zero-direction” and the sense 

of rotation. For example, in Figure 1, if the zero direction is due east, corresponding to 

anti-clockwise rotation, the data will take the value of 60°, whereas if the zero direction is 

due north, corresponding to clockwise rotation, the data will take the value of 30°. 

However, the "beginning" are always coincides with the "end", i.e., 0°-360°, and the 

measurement is also periodic, with   being the same as 2p    for any integer p. The 

starting point and rotation from this point, regardless of whether it is clockwise or 

anticlockwise, are taken as positive values. Observations using these two dimensions are 

also called circular or directional data (Jammalamadaka and SenGupta, 2001).  

 

In addition, directional data that take values of 0  to 360     or 0 to 2   are 

commonly termed polar coordinate data with magnitude = 1, namely, (1, θ). On the other 

hand, the directional data can be transformed into rectangular coordinate form, (X, Y), 

through cos and sinx y    for every  . Figure 2 shows the directional data in 

terms of both polar coordinates (1, θ) and rectangular coordinate (X, Y). There are many 

other unique features of directional data; for further reference, see (Mardia and Jupp, 

1999; Jammalamadaka and SenGupta, 2001; Fisher, 1993). 
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In practice, the wind direction is an important feature that should be considered in 

building wind turbines and in structural and environmental design analysis. For that 

purpose, the statistical models always provide good information to describe about the 

behaviours of wind direction. In fact, the finite mixtures of von Mises distributions is 

among the most commonly used and was found to provide good results for the purpose of 

modelling the circular data, particularly for the wind direction. For examples, Masseran 

et al. (2013) showed that the finite mixture of the von Mises distribution with H number 

of components was the best distribution to describe the wind direction distributions in 

Malaysia. Carta et al. (2008) have showed that a the finite mixture of von Mises is a very 

flexible model for wind direction studies particularly for the wind direction regimes in 

zones with several models or prevailing wind directions. In fact, the same result have 

been showed by Azmani et al. (2009) in modelling the sensor data  for the cases of a 

recursive change point estimate of the wind speed and direction. Apart from that, 

Heckenbergerova et al. (2015) showed that the finite mixture of von Mises distribution is 

able to provide an optimized solution for wind direction parameters corresponds to the 

Particle Swarm Optimization method. Thus, since the von Mises distribution is a flexible 

model for addressing wind directional data with several modes, this study attempts to 

describe and compare the suitability of von Mises model with the circular model based on 

nonnegative trigonometric sums in order to determine the best statistical model for wind 

direction data in Kudat. 

2.   Study area, data and descriptive statistics 

Sabah is a state of Malaysia, located in the northern section of the island of Borneo 

(6.8833° N, 116.8333° E). It is the second largest state in the country after Sarawak, 

which it borders to the southwest. Sabah is relatively wet (annual precipitation exceeding 

200 mm) due to the tail effect of typhoons, which frequently traverse the Philippine 

islands across the South China Sea. It is worth mentioning that from April to November 

each year, when typhoons frequently develop over the west Pacific and move westward 

across the Philippines, the south-westerly winds over the northwest coast of Sabah may 

reach speeds of 10.30 m/s or more (Masseran, 2013a).  

 

The data used in this study were obtained from the Malaysian Meteorological 

Department. In this study, hourly wind direction data from 1 January 2009, to 30 

November 2009 were used. Wind direction data are circular because they are recorded in 

terms of degrees, from 0° to 360°. However, for modelling, data transformation into 

radian units can be performed easily. Apart from that, the missing data has been 

estimated by using the method of single imputation (Masseran, 2013b). 

 

Before a detailed analysis is conducted, it is important to evaluate the descriptive 

statistics to obtain some preliminary information about the data. As mentioned above, 

directional data have many features that differ from those of standard linear data sets. For 

example, the arithmetic mean, which is commonly used for linear data, cannot be used as 

a measure of the centre of the directional data. The sample variance s
2
, which depends on 
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the sample mean, also suffers from the same problem. Thus, we need an alternative 

measure of centre and dispersion when dealing with directional data (Jammalamadaka 

and SenGupta, 2001). Let 1 2, , n    be a set of directional data; the mean direction can 

then be calculated as 
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  accomplish the polar-to-rectangular 

transformation. On the other hand, the measure for the dispersion of the directional data 

is commonly derived from the circular variance, which is given as 

 2 21
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n
  

 
 

A small value of the circular variance indicates the data have a large concentration 

around the mean direction. 

 

The percentile measure for directional data is same as that for linear data: it is a measure 

of the value of a variable below a certain percent of observations. For example, the 

(100p)-th percentile is often called the quantile of order p. Let 1 2 ny y y    be an 

order statistic for n observations; yr is then the quantile of order 
 1

r
p

n



 as well as the 

 
100

1

r

n 
 percentile. Thus, the p-th percentile of the data is also a quantile of order p for the 

data. Using these descriptive measurements, Table 1 shows the descriptive statistics for 

the wind directional data in Kudat. Based on the descriptive statistics in Table 1, the 

circular mean of the wind direction is approximately 218.21°. However, the circular 

variance is 0.978, which implies that the data were not well concentrated around their 

mean direction. Thus, we suspect that the data are either approximately uniformly 

distributed or have a several-directional mean. The values of 25
th

, 50
th

, and 75
th

 percentile 

are 80°, 220°, and 240°, respectively.  

3. Statistical models for the multi-modal distribution of circular data 

In this study, 2 statistical model known as Finite Mixture of von Mises Fisher and 

Circular distribution based on nonnegative trigonometric sums has been fitted to the data 

of wind direction in Kudat that indicated properties of multi-modal distribution. In order 

http://en.wikipedia.org/wiki/Percentage
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to determine the best fitted model, the suitability of both of these models will be compare 

by using the Akaike’s Information Criterion (AIC) method.  

3.1 Finite Mixture of von Mises-Fisher distributions (mvMF) 

In some applications, the observed wind direction data cannot be represented by a 

unimodal distribution. To overcome this problem, a finite von Mises-Fisher mixture 

distribution (mvMF), which is comprised of a sum of H von Mises probability 

distributions, has been proposed. Let   be a random variable representing the wind 

direction in radians, and let  ' cos ,sin 'i i x  be a circular data point in rectangular 

coordinates. Then, the mixture of von Mises-Fisher distributions is given by  

         '

1 1
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x μ  is a single von Mises Fisher model, d  is a dimension of 

random vector x  (in our cases d =2), ,h hμ  are the parameter mean direction and 

concentration parameter, respectively, for h=1, 2,… H components of the von Mises 

distribution, while h  is a mixing parameter of nonnegative quantities that sum to one, 

given by 
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represents the modified Bessel function of the first kind and order r. The MLEs for the 

mvMF are very difficult to derive in a standard way. However, Banerjee et al. (2005) 

provided a solution of the parameter estimates for the mvMF distribution based on the 

expectation maximisation (EM) approach. Let  ,h h hα μ  denote the parameters of the 

von Mises-Fisher distribution,  ,h h hα μ , for 1 h H  . Then, the mvMF distribution 

can be written as 

     
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h
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where  1 1 1 2, , , , , , ,H H   α α α . According to Banerjee et al. (2005), to generate 

a random sample from this mixture distribution, the h-th von Mises distribution is 

randomly chosen with probability h . Let,  1 2, , , 'nX  x x x  be a data set of n 

independent sample points following Equation (17), and let  1 2, , , 'nZ z z z  be the 

corresponding set of hidden random variables that indicate a particular von Mises 

distribution from which a sample is generated. In particular, iz h  if ix  is generated 

from  |h hf x α . Thus, the log-likelihood can be written as 
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Assume that the posterior distribution,  | ,ip h x  , of the hidden variables  | ,Z X 
 

are known. Then, the expectation of the log-likelihood over the given posterior 

distribution p is given by 
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Next, the parameter   is re-estimated to maximise the expectation function. To 

maximise the expectation function with respect to h , the Lagrangian multiplier   

corresponding to the constraint 
1

1
H

h

h




  is used, and by taking the partial derivatives 

with respect to each h  
from the Lagrangian, the following is obtained: 
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Next, by summing both sides of Equation (20) over all h, Banerjee at al. (2005) found 

that n   ; thus, the parameter estimate for h is given by 
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The parameter estimates for  ,h h hα μ  can be derived under the constraints 1μ  

and 0h   for h=1, 2, … H. Let h  be the Lagrange multiplier corresponding to the 

constraint; if 0  , then  |f x α  is the uniform distribution on the sphere, and if 0  , 

then the multiplier for the inequality constraint has to be zero. Thus, the Lagrangian is 

given as  
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By taking the partial derivative with respect to  
1

, ,
H

h h h h
 
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μ  from Equation (22), and 

setting it equal to zero, for each h, Banerjee et al. (2005) obtained 
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Using Equations (23) and (24), they found that 
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Next, substituting Equation (27) into Equation (25) provides the parameter estimates for 

h  as given by 
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. Readers desiring a detailed discussion of the 

parameter estimates for the von Mises-Fisher distribution should consult (Banerjee et al., 

2005; Hornik and Grun, 2014; Mooney et al., 2003). 

3.2 Circular Distribution based on Nonnegative Trigonometric Sums (NNTS) 

The NNTS model has been found to be flexible enough to model directional data sets 

exhibiting multimodality or skewness. The nonnegative trigonometric sum series for a 

circular variable   has been expressed by Fejer (1915) as the squared modulus of a sum 

of complex numbers, which can be written as 

 
2

0

, for  0,1, 2, , 17
M

ik

k

k

c e k M



  

where 2  , 1i   , and kc  is a complex parameter. Using this series, Fernandez-

Duran [15] proposed a new family of distributions for circular random variables, given as  
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trigonometric sum integrate to 1. Thus, there are 2*M free parameters, where the 

parameter 
0c  must be real and positive.  

Next, to ensure that the integration for the probability density function is equal to one, 

 ; , 1f M d


   α , a constraint on the parameter  is needed, namely, 
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  is a non-negative real number. It then follows that Equation 

(3) can be written in the quadratic form 
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and the log-likelihood function is derived as 
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To determine the maximum likelihood estimator for parameter  , Fernandez-Duran & 

Gregorio-Dominguez (2010) suggested the application of the Newton-like manifold 

algorithm using the procedures described by Absil et al. (2008). Using the Newton-like 

manifold algorithm, the maximum likelihood estimator for the NNTS model can be 

solved by 

   23gradl α 0  

where  gradl α  is a gradient for the log-likelihood function of the value of α  in 

Equation (6). The solution of Equation (7) is the critical point of the real log-likelihood 

function for the NNTS model. The Newton-like manifold algorithm method provides the 

solution for the maximum likelihood estimator through several steps: 
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This algorithm terminates when the norm of the gradient or the norm of the difference 

   
1k k

gradl gradl


 α α  is less than some specified error. For example, Fernandez-Duran 

& Gregorio- Dominguez (2010) have used the differentiation rule of real functions of a 

complex vector, as follows 
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Apart from that, the NNTS model in Equation (2) can also be expressed as  
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4. Results and discussion 

As mentioned above, the objective of this study was to identify the most appropriate 

distribution for wind direction at the Kudat station to better understand the wind regime 

in this area. Tables 2 and 3 show the parameter estimates for the mvMF and NNTS model 

respectively. Figure 3 presents the fitted mvMF and NNTS for the wind direction at the 

Kudat station. From the figure, it is clear that the single mvMF distribution (H=1) failed 

to model the wind direction data at the Kudat station accurately. The same conclusion is 

draw from NNTS model (M=1). However, as the number of components of the mvMF 

and NNTS model increase, both of the models fit the data in a more precise way. As a 

result, the fitted mvMF and NNTS models with 2, 3, …, 8 components model the data 

with similar accuracies. It is quite difficult to determine the suitability precision of both 

models based on graphical representations only. Thus, the Akaike’s Information Criterion 

(AIC) was used to evaluate the performance of both models. 

 

Table 4 and Figure 4 show the AIC comparison each fitted mvMF and NNTS model. 

From Table 4 and Figure 4, by comparing each mvMF, it is clear that the single mvMF 

has the highest AIC value, implying that the single mvMF is not a good model for wind 

direction in Kudat. In fact, this result is similar for the NNTS model with M=1 

component. However, as the number of components increase for both mvMF and NNTS, 

the AIC values decrease, which implies that the use of more components in the mvMF 

and NNTS models provides a model that more adequately fits the data. In addition, by 

comparing the values of AIC for both models, it is found that the AIC values for the 

mvMF models are lower than those for the NNTS models for all components. For 

example, the value of AIC and BIC for the mvMF model with H=4 components are 

lower than those for the NNTS model with M=1, 2, 3 4, 5, and 6 components. Therefore, 

the mvMF models were able to provide better results in fitting the wind directional data 

in Kudat compared to the NNTS models. Thus, the mvMF model is preferred to the 

NNTS model for fitting the wind directional data in Kudat. In fact, a suitable 

mathematical equation for the Kudat wind directional data that can written as a mvMF 

(H=4) model is given by  
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Since the mvMF has been determined to be a good model for the data, it can be used to 

describe some characteristics of the wind direction in Kudat. In this study, the parameter 

μ  for mvMF has been defined in terms of rectangular coordinates. The interpretation of 

the dominant direction of the wind is not suitable to be described in this way. Thus, by 

transforming the results into units of degrees, 0 360   may be more appropriate. 

Based on Equation (31), the measured parameters for the mean directions in terms of 

degrees are 233.37°, 256.06°, 55.52° and 82.65°. In addition, Figure 5 shows a circular 

density plot for the mvMF with H=4 components. This figure clearly shows that most of 

the wind was blowing from the north-northeast and the west-southwest and some from 

the east-southeast. The circular density plot reveals that the wind direction has two 

different dominant directions: from 190°-270° with mean directions of 233.37° to 

256.06° with respect to the parameter concentration 11.658   and 10.752  , while 

the other dominant direction are found to be in the range of 30°-90° with mean directions 

of 55.52° and 82.65° and also the concentration parameter 9.227   and 0.971  . 

These imply that a stronger concentration about the mean direction of the wind blow 

comes from the South-West direction and follow by the minor dominant direction of the 

wind blows from the North-East direction.

 
 

Apart from that, the others direction are found to be quite uniformly distributed. 

Determining the dominant wind direction will contribute valuable information to 

planning or forecasting activities in such sectors as wind energy generation, air pollution 

assessment, climate change, construction, and maritime activities. For example, in wind 

energy evaluation, based on this information, the wind turbine can be positioned such that 

the production of energy is maximised. 

6.   Conclusions 

Our study focused on determining the best statistical model for wind direction in the 

Kudat region. The mixtures von Mises-Fisher distribution and Circular distribution based 

on nonnegative trigonometric sums thereof were fit to the data. The results obtained 

showed that the mixtures von Mises-Fisher distribution was able to be presented as a 

better model than a Circular distribution based on nonnegative trigonometric sums. In 
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fact, it was found that mixtures von Mises-Fisher distributions with 4H   components 

adequately modelled the wind direction distribution in Kudat. Apart from that, circular 

plots of the mvMF model clearly show that several wind directions are more dominant in 

Kudat, while the other directions show an approximately uniform dispersion.  

Appendix 

(a) Bessel Function and its Important Properties: 

Bessel function,  vJ z  for the order- v
th

, is a solution for the differential equation given 

by 
2 2

2 2

1
1 0

x dx v
x

z z dz z

 
    
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In addition, the Bessel function,  vJ z  can also be written in term of the integration form 

given by 
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While in the the expansion series for Bessel function,  vJ z  can be written as 
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For any positive integer n, the integration form of the Bessel function can also be written 

as 
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and     1 0

d
zJ z zJ z

dz
 . Next, the modified Bessel function of the 1st kind with order-

v has been descibe as the following Equations  
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In particular,  
2
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0
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2
I e d


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   has been determined as normalizing constant for the 

von Mises-Fisher distribution. The other properties of the modified Bessel function are 

explained based on the following Equations 
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By referring to the above mentioned properties,  it is found that     1 0 ,
d
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. Next, the properties of monotonic increasing function for the 

parameter   in the Bessel function can be explain based on the ratio of  
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    Apart from that, some approximations for the Bessel 

function that having a small or large value of   can be solve using the following 

equations: 

 

If   is large, 
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For more detail regarding the properties of Bessel function, please refer to 

Jammalamadaka and SenGupta, 2001; Stephenson, 1973).  
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Figure 1: The observed directional data depend on choice of origin and the sense of 

rotation [1]. 

 

Figure 2: Relationship between polar coordinate data (1, θ) and rectangular 

coordinate data (X, Y) [1].  
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Figure 3:   The fitted mvMF and NNTS model respectively for wind direction in Kudat. 
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Figure 4:   AIC comparison for both of the models mvMF and NNTS. 

 

 

 

 

Figure 5:   Circular density plot for the mvMF (H=4) model at the Kudat station. 
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Table 1: Descriptive statistics for Kudat wind direction 

Kudat wind station 

Mean direction 218.21° 

Circular variance 0.978 

25
th

 percentile 80° 

50
th

 percentile 220° 

75
th

 percentile 240° 

Table 2: The parameter estimates for the mvMF model up to six numbers of components  

mvMF Parameter Estimates 

 T
μ      

N=1 -0.7854526 -0.6189218 0.42187 1 

N=2 -0.5153732 -0.8569659 7.242308 0.4787608 

 0.2909280 0.9567449 1.628116 0.5212392 

N=3 0.02426039 0.9997057 8.096920 0.4945873 

 0.56316151 0.8263469 1.002905 0.3759604 

 -0.50926732 

 

-0.8606084 12.27827 0.1294524 

N=4 0.56772170 0.8232205 11.658204 0.3474064 

 -0.31381192 -0.9494852 9.2272398 0.1439757 

 -0.63765746 -0.7703200 10.752359 0.1412261 

 

 

0.02245815 0.9997478 0.970675 0.3673919 

N=5 0.5274866 0.8495633 10.086927   0.1753316 

 0.9273593 0.3741721 2.207358   0.1015669 

 -0.3347130 -0.9423201 7.297946 0.2486590 

 -0.6281035 -0.7781298 12.444567   0.2712363 

 

 

-0.5343394 

 

0.8452700 2.124835 0.2032062 

N=6 -0.7545886 0.6561982 0.9392541  0.1013886 

 0.5624254 0.8268481 15.2835080 0.1124414 

 -0.2662294 -0.9639097 12.0485284 0.1329380 

 -0.4584617 -0.8887142 7.8910636 0.1663857 

 0.2389779 0.9710250 1.2310384 0.2985423 

 

 

-0.6692827 -0.7430078 20.1925421 0.1883040 

N=7 0.9742367 0.2255278 3.069639 0.08087669 

 -0.5527640 0.8333378 2.834249 0.17782239 

 -0.3763575 -0.9264745 8.225171 0.15866292 

 -0.3802596 -0.9248798 5.966826 0.08184980 

 -0.6323128 -0.7747132 15.641954 0.19080226 

 0.5208237 0.8536643 15.641954 0.20578241 

 

 

-0.5310920 -0.847314 15.6419 0.10420354 

N=8 -0.6038800 -0.79707526 3.419402 0.12369715 

 0.9959767 0.08961304 1.205793 0.03612474 

 -0.6425706 -0.76622647 18.202829 0.23905701 

 -0.2556487 -0.96676975 12.510171 0.17256913 

 0.5312111 0.84723950 12.639344 0.13472241 

 0.8595642 0.51102773 2.555491 0.06450745 

 0.3521644 0.93593815 2.438121 0.09955324 

 -0.6015076 0.79886709 3.233072 0.12976885 
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Table 3: The parameter estimates for the NNTS model up to six numbers of 

components 

NNTS Parameter Estimates 

 ˆ ˆ ˆ
k rk ck

i     
 ˆ ˆ ˆ

k rk ck
i     

M=1 k=0; 0.39088770 + i(0.000) M=6 k=0; 0.33051696 + i(0.000) 

 k=1; -0.07851115 + i(0.01406219)  k=1; -0.06448836 – i(0.0147715) 

    k=2; -0.08979539 – i(0.14949561) 

M=2 k=0; 0.35145494 + i(0.000)  k=3; 0.06867154 + i(0.00497386) 

 k=1; -0.07058781 + i(0.00018935)  k=4; -0.05872581 + i(0.07351352) 

 k=2; -0.08954087- i(0.15044643)  k=5; -0.00175609 – i(0.01752988) 

    k=6; 0.03374423 + i(0.00904722) 

M=3 k=0; 0.34473199 + i(0.000)    

 k=1; -0.06519571 - i(0.01050682) M=7 k=0; 0.32966310 + i(0.000) 

 k=2; -0.08975569 – i(0.15251008)  k=1; -0.06524948 - i(0.01568993) 

 k=3; 0.06761674 + i(0.00815430)  k=2; -0.08992444 – i(0.15000096) 

    k=3; 0.06880256 + i (0.00497416) 

M=4 k=0; 0.33206489 + i(0.000)  k=4; -0.05858657 + i(0.07387359) 

 k=1; -0.06721701 - i(0.01422902)  k=5; -0.00161553 – i (0.01720893) 

 k=2; -0.08899561 - i(0.15149014)  k=6; 0.0339152 0+ i(0.00906594) 

 k=3; 0.06842034 + i(0.00487464)  k=7; -0.01385732 - i (0.00392186) 

 k=4; -0.05831522 + i(0.07205559)    

   M=8 k=0; 0.32927979 + i(0.000) 

M=5 k=0; 0.33191670 + i(0.000)  k=1; -0.06543936 – i(0.01564708) 

 k=1; -0.06720818- i(0.01503347)  k=2; -0.09033585 – i(0.14995585) 

 k=2; -0.08942703 – i (0.15065709)  k=3; 0.06905995 + i(0.00473962) 

 k=3; 0.06766157 + i(0.00499270)  k=4; -0.05825125 + i(0.07392021) 

 k=4; -0.05874579 + i(0.07219662)  k=5; -0.00165490 – i(0.01733769) 

 k=5; -0.00101357 – i(0.01676556)  k=6; 0.03366950 + i(0.00892418) 

    k=7; -0.01402637 – i(0.00393321) 

k=8; 0.00447990 – i(0.01254067) 

Table 4:   AIC values for comparison between mvMF model and NNTS model 

Model AIC  Model AIC 

mvMF (H=1) 31472.46  NNTS (M=1) 31576.27 

mvMF (H=2) 26468.94  NNTS (M=2) 27811.47 

mvMF (H=3) 26231.88  NNTS (M=3) 27311.61 

mvMF (H=4) 26141.58  NNTS (M=4) 26368.29 

mvMF (H=5) 26123.57  NNTS (M=5) 26356.16 

mvMF (H=6) 26113.17  NNTS (M=6) 26239.38 

mvMF (H=7) 26111.30  NNTS (M=7) 26135.64 

mvMF (H=8) 26110.60  NNTS (M=8) 26120.32 

 


