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Abstract 
In this paper we present a new redescending M-estimator “Insha’s estimator” for robust 
regression and outliers detection that overcomes some drawbacks of other M-estimators for 
robust regression and outliers detection, such as destruction of the good observations and lack of 
simplicity in applications. The Ψ-function associated with the proposed estimator attains more 
linearity in the central section before it redescends, resulting in enhanced efficiency. Moreover the 
estimator is continuous everywhere and can be written in closed form without the use of an 
indictor function. The estimator is also applied to a real world example taken from the literature. 
For the purpose of comparison with other well-known redescending M-estimators extensive 
simulation study has been carried out. The example and simulation study show that using this 
estimator all the outliers can be successfully detected and is not affected by outliers. 

1.   Introduction 
One of the most important statistical tools is a linear regression analysis for many 
fields. Nearly all regression analysis relies on the method of least squares for 
estimation of the parameters in the model. But the least squares method has 
been constructed under specific assumptions, such as normality of the error 
distribution. It is also assumed that the underlying model holds for every 
observation. However, when applying the method in practice these assumptions 
are rarely met in full, as they are at best only approximations to reality. The most 
well-known problem in the application of regression is when some observations, 
called outliers, deviate from the postulated pattern. Outliers can be generated by 
from a simple operational mistake to including small sample from a different 
population, and they make serious effects of statistical inference. Even one 
outlying observation can destroy least squares estimation, resulting in parameter 
estimates that do not provide useful information for the majority of the data. 
 
Robust regression analyses have been developed as an improvement to least 
squares estimation in the presence of outliers and to provide us information 
about what a valid observation is and whether this should be thrown. The primary 
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purpose of robust regression analysis is to fit a model which represents the 
information in the majority of the data. Robust regression is an important tool for 
analyzing data that are contaminated with outliers. It can be used to detect 
outliers and to provide resistant (stable) results in the presence of outliers. 
 
Many methods have been developed for these problems. However, in statistical 
applications of outlier detection and robust regression, the methods most 
commonly used today are Huber’s M-estimation (Hampel et al., 1986), LMS-
estimation (Rousseeuw, 1984), LTS-estimation (Rousseeuw, 1984, 1985),  
S-estimation (Rousseeuw and Yohai, 1984) and MM-estimation (Yohai, 1987) 
etc. 

2.   M-estimator 
M-estimators use maximum likelihood formulations by deriving optimal weighting 
for the data set in non-normal conditions. It was introduced by Huber (1973) as a 
generalization of the familiar least squares criterion, replacing the quadratic loss 
function with a symmetric function ρ(.), yielding 
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where the function ρ(.) gives the contribution of each residual to the objective 
function. It is the simplest approach both computationally and theoretically. 
Although it is not robust with respect to leverage points, it is still used extensively 
in analyzing data for which it can be assumed that the contamination is mainly in 
the response direction. The function ρ(.) is usually chosen such that it represents 
some weighting of the ith residual. This weighting means that outlying 
observations have their weights reduced and thus the estimates are affected less 
by such noise. A weighting of zero is equivalent to classification as an outlier. 
 
Differentiating (1) with respect to the regression coefficients β̂ j

yields 
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where ψ(.) is the derivative of ρ(.) and the corresponding M-estimator is the 
maximum likelihood estimator. 
 
Define the weight function w(ri) = ψ(ri)/ri, then the estimating equations may be 
written as 
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Solving the estimating equations is a weighted least-squares problem. The 
weights, however, depend upon the residuals, the residuals depend upon the 
estimated coefficients, and the estimated coefficients depend upon the weights. 
An iterative solution (called iteratively reweighted least-squares (IRLS)) is 
therefore required. 
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2.1   Redescending M-estimator 
On the other hand redescending M-estimators are those M-estimators that are 
able to reject extreme outliers completely. That is, an M-estimator is called a 
Redescending M-estimator, If the derivative ψ  = ρ′  of ρ  is redescending, i.e. 
satisfies 0)(lim =′

±∞→
r

r
i

i

ρ .  

 

It was first introduced by Hampel (Andrews et al., 1972), who used a three part-
redescending estimator, with ρ-function bounded and ψ-function becoming zero 
for large r . The ψ-function of Hampel’s estimator is given by 
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where a, b, and c are positive constants and ∞<<≤< cba0 . This estimator 
demonstrated good performance in the Princeton Robustness Study.  The lack of 
differentiability of (.)ψ  is not ideal, however, and a smoothψ -function would be 
preferred. This led to the development of smoothly redescending M-estimators. 
Several smoothly redescending M-estimators have been proposed. 
 
The most commonly used smoothly redescending M-estimators are Andrew’s 
sine function introduced in the Princeton Robustness Study (Andrews et al., 
1972), the Ψ-function of which is given by 
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Tukey’s biweight function by Beaten and Tukey (1974) with Ψ-function given by 
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and Qadir Beta function (Qadir 1996) the Ψ-function of which is 
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Ali proposed a modified form of Tukey’s biweight function (Ali and Qadir 2005) 
the Ψ-function of which is 
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For regression analysis, some of the redescending M-estimators can attain the 
maximum breakdown point. Moreover, some of them are the solutions of the 
problem of maximizing the efficiency under bounded influence function when the 
regression coefficient and the scale parameter are estimated simultaneously. 
Hence redescending M-estimators satisfy several outlier robustness properties.  

3.   Insha’s redescending M-estimator 
We propose a new redescending M-estimator. This estimator covers some 
drawbacks of existing redescending M-estimators and should be regarded as 
new tool for robust regression and outlier detection. We discuss the shape and 
properties of its ρ-function and the corresponding Ψ-function and weight function. 

Consider the following objective function  
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where c is the tuning constant and for ith observation the variable ri are the 
residuals scaled over MAD. 
 
The above ρ-function satisfies the standard properties generally associated with 
a reasonable objective function of redescending M-estimator, namely, 
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• ρ is continuous (ρ is differentiable) 
 
Taking derivative of (8) with respect to r, we get the corresponding Ψ-function 
that is 
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Dividing the above Ψ-function by r we get the corresponding weight function as 
given below 
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We graph the ρ-function, Ψ-function and the weight function in Fig. 1. 
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Figure 1: Graph of Insha’s function (a) Objective function (b) Ψ-function (c) 
Weight function. 

4.   Comparison 
All of the above mentioned redescending M-estimators works well in detecting 
outliers and eliminating their influence on the estimates but with some 
drawbacks. Hampel’s three part function requires the user to choose three tuning 
parameters in the Ψ-function which is undesirable. Second the lack of 
differentiability of its Ψ-function is not ideal. Andrew’s sine function and Tukey’s 
biweight function covers the drawbacks of Hampel’s three part function up to 
some extent and give robust estimates but on the sacrifice of many good 
observations. They can give full weight i.e. one only to the observations that have 
zero residuals and starts to downweight as they slightly departure from zero. 
According to Hampel, et al. (1986) we can divide the observations into three 
categories: clear outliers, doubtful outliers and good observations. A good 
redescending M-estimator will be that which specify some boundary for the good 
observations and gives full weight within that specified bound and starts to 
downweight outside the boundary of good observations (doubtful observations) 
and finally gives zero weight to outliers. There exists such an estimator called 
hyperbolic tangent estimator. This estimator divides the data into three 
categories mentioned above but the problem is that one has to choose two 
tuning constants while using this estimator also its Ψ-function lacks 
differentiability and is not very easy to apply. 
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Also the well-known Winsor’s principle states that all the distributions are Normal 
in the middle. Hence the Ψ-function of M-estimators should resemble the one 
that is optimal for Normal data in the middle. Since the maximum likelihood 
estimate for Normal data is the mean which has a linear Ψ-function, it is desired 
that krr ≈)(ψ for small r , where k is a nonzero constant. In general, Ψ-function 
that is linear in the middle results in better efficiency at the normal distribution 
(Tukey, 1960). So we need such an estimator that treats the central observations 
linearly like OLS and then redescends.  
 
The first improvement of the proposed function over others is that it has a 
continuous derivative everywhere and the second one is that its Ψ-function 
capture the property of longer linear central section from the Ψ-function of least 
squares and behaves linearly for large number of central values as compared to 
other smoothly redescending Ψ-functions. This increased linearity certainly 
responses in enhanced efficiency (Ali et. al., 2005). The Ψ-function then 
redescends gradually for increasing value of residuals. Moreover, the proposed 
Ψ-function is much more convenient than the previously mentioned Ψ-functions 
because we can write it in closed form without the use of an indictor function. 
This saves a few steps in programming an iterative method to minimize the 
objective function. A comparative graph of some of the well known redescending 
Ψ-functions together with the Insha’s Ψ-function is presented in Fig. 2. 
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Figure 2: Combined plots of Andrew’s (Dash 2-Dot), Tukey’s (Dash), Qadir’s 
(Dot), Asad’s (Dash 1-Dot) and Insha’s (Solid) Ψ-functions. 

5.   Applications 
To illustrate the performance of the proposed estimator as compared to other 
redescending M-estimators an analysis of a real data set and some simulation 
results are presented below. 
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5.1   Example: Annual Rates of Growth of Prices in China 
This example is taken from Rousseeuw and Leroy (1987) and is given in Table 1. 
The response variable is the growth of the average prices in the main cities of 
Free China while the predictor variable is the year. For instance in 1940 prices 
went up 1.62% as compared to the previous year. In 1948 a huge jump occurred 
as a result of enormous government spending, the budget deficit, and the war, 
leading to what is called hyperinflation.  
 
The LS regression equation is given by xy 85.241049ˆ +−= , whereas the LMS 
equation is xy 102.047.2ˆ +−= . The equations estimated by other redescending  
M-estimators such as Tukey’s biweight function, Andrew’s sine function and 
Qadir’s beta function are xy 109.075.2ˆ +−= , xy 108.072.2ˆ +−=  and 

xy 109.075.2ˆ +−=  respectively. The estimate by our method is xy 106.064.2ˆ +−= , 
which effectively ignores the outliers and gives closed estimates to other robust 
methods. 

Table 1: Annual rates of growth of average prices in the main cities of Free 
China from 1940 to 1948. 
Year 
(xi) 

Growth of prices 
(yi) 

Estimated Growth 
LS LMS Tukey’s Andrew’s Qadir’s Asad’s Insha’s

40 1.62 -55.67 1.61 1.60 1.61 1.60 1.60 1.61 
41 1.63 -30.82 1.71 1.71 1.71 1.71 1.71 1.71 
42 1.90 -5.98 1.82 1.82 1.82 1.82 1.82 1.82 
43 2.64 18.87 1.92 1.93 1.93 1.93 1.93 1.93 
44 2.05 43.71 2.02 2.04 2.04 2.04 2.03 2.03 
45 2.13 68.56 2.12 2.15 2.15 2.15 2.14 2.14 
46 1.94 93.40 2.22 2.26 2.25 2.26 2.25 2.24 
47 15.50 118.25 2.33 2.37 2.36 2.37 2.36 2.35 
48 364.00 143.09 2.43 2.48 2.47 2.48 2.47 2.46 

 
To see the relative performance, Table 1 lists the estimated values by all these 
methods. All the robust methods together with the Insha’s function provide a fair 
approximation to the majority of the data, except of course for the last two years, 
where the observed yi go astray. On the other hand, the LS fit is bad everywhere: 
The estimated yiˆ  is even negative for the first three years, after which it becomes 
much too large, except for the 1948 value, which it cannot match either. Least 
squares smear out the effect (of nonlinearity of the original data) over the whole 
column, whereas all the other robust methods fits the majority of the data (where 
it is indeed linear) and allows the discrepancy to show up in those two years 
where actually something went wrong.  

5.2   Simulation Results 
One of the popular ways for the comparison of different estimators is to carry out 
simulation, because in such a situation one knows the true parameter values of 
the generated data. In this section we present some of the simulation results to 
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check the performance of new redescending M-estimator as compared to other 
well known redescending M-estimators. For this purpose we have resorted to 
three types of configurations. First one is the normal situation, 

exxy iipii ++++= ...2 1 , 
in which ei ~ N(0, 1) and the explanatory variables are generated as xij ~ N(0, 
100) for pj ,...,1= . The least squares estimates are obtained for the generated 
model, then the data is contaminated by replacing 20% of the observations by 
outliers in the y-direction generated according to the above model but using an 
error term ei ~ N(50, 1). 
 
Finally, in the third situation we introduce outliers in the x-direction in such a way 
that 90% of the observations are again as in the first situation. In the remaining 
10% the yi are generated as before, but afterwards the xi1 are replaced by values 
that are now normally distributed with mean 500 and variance 10. 
 
The purpose of our simulation is to measure to what extent the estimates by our 
new method differ from the true values i.e. 20 =β and 1...21 ==== βββ p and 
from the estimates provided by Andrew’s sine function and Tukey’s biweight 
function the two well known redescending M-estimators. In our simulation we 
performed many replications keeping in view the number of predictor variables 
and the sample size n. Some results are presented in Table 2, 3, and 4. From 
these tables it is clear that the results of the new redesceding M-estimator are 
very similar to that of OLS without outliers, Andrew’s sine function and Tukey’s 
biweight function and is not seriously effected by outliers in both x and y 
directions. 

Table 2: Simulation Results of Regression with Intercept, for n=50 and p=2 
(including intercept term). 

Method Used Normal Outliers in y Outliers in x 
β0 β1 β0 β1 β0 β1 

OLS 2.04 0.999 11.97 1.04 -28.18 0.264 
Andrew (1.5) 2.06 0.999 2.07 0.998 2.03 0.999 
Tukey (4) 2.07 0.999 2.08 0.998 2.03 0.998 
Qadir (4) 2.07 0.999 2.08 0.998 2.03 0.998 
Asad (4) 2.06 0.999 2.07 0.998 2.03 0.999 
Insha (4) 2.05 0.999 2.07 0.998 2.03 0.999 

Table 3: Simulation Results of Regression with Intercept, for n=100 and p=3 
(including intercept term). 

Method Used Normal Outliers in y Outliers in x 
β0 β1 β2 β0 β1 β2 β0 β1 β2 

OLS 2.07 1.00 1.00 12.14 1.02 0.993 -18.70 0.32 0.99 
Andrew(1) 2.05 1.00 1.00 2.04 1.00 0.999 2.04 1.00 1.00 
Tukey(3) 2.05 1.00 1.00 2.04 1.00 1.000 2.04 1.00 1.00 
Qadir (3) 2.05 1.00 1.00 2.04 1.00 1.000 2.04 1.00 1.00 
Asad (3) 2.05 1.00 1.00 2.05 1.00 1.000 2.05 1.00 1.00 
Insha(3) 2.05 1.00 1.00 2.05 1.00 0.999 2.05 1.00 1.00 
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Table 4: Simulation Results of Regression with Intercept, for n=500 and p=4 
(including intercept term). 

Method Used Normal Outliers in y Outliers in x 
β0 β1 β2 β3 β0 β1 β2 β3 β0 β1 β2 β3 

OLS 1.96 1.00 1.00 1.00 8.15 0.878 0.821 0.826 -9.17 0.280 0.915 0.994
Andrew(1.5) 1.96 1.00 1.00 1.00 1.91 0.999 0.999 1.000 1.93 1.00 0.999 0.999
Tukey(4) 1.96 1.00 1.00 1.00 1.91 0.999 0.999 1.000 1.93 1.00 0.999 0.999
Qadir (4) 1.96 1.00 1.00 1.00 1.91 0.999 0.999 1.000 1.93 1.00 0.999 0.999
Asad (4) 1.95 1.00 1.00 1.00 1.91 0.999 0.999 1.000 1.93 1.00 0.999 0.999
Insha(4) 1.95 1.00 1.00 1.00 1.91 0.999 0.999 1.000 1.93 1.00 0.999 0.999

6.   Conclusion  
Our purpose is to compare the Insha’s redescending M-estimator with that of 
some other redescending M-estimator for robust regression and outliers 
detection. The estimator is very easy to apply as compared to other 
redescending M-estimators as its Ψ-function is continuous everywhere and one 
has to choose only one tuning parameter while using this estimator. It is also 
clear from Fig. 1 (c) that the estimator gives more opportunity to the observations 
with small residuals (good observations) to take part fully (with weight equal to 1) 
in model fitting. We have also shown how this approach can provide an 
alternative to other robust regression methods. The above example and 
simulation study show that our estimator is not affected by outliers. The method 
proposed here requires only modest computational resources and can be 
executed with standard statistical software because iterative procedure is 
involved like in other M-estimators. This method requires the calculation of an 
ordinary least square fit, finding weights from the residuals and applying 
iteratively reweighted least squares technique to find the estimates of the 
parameters. 

References 
1. Ali, A., Qadir, M. F. (2005), A Modified M-estimator for the detection of 

outliers. Pakistan journal of statistics and operation research, 1, 49-64. 
2. Ali, A., Qadir, M. F., Ullah, I. (2005), Regression Outliers: New M-Class Ψ-

Functions based on Winsor’s Principle with Improved Asymptotic 
Efficiency. Proceedings of the 8th Islamic countries conference on 
statistical sciences in Lahore, Pakistan. 

3. Andrews, D. F., Bickel, P. J., Hampel, F. R., Huber, P. J., Rogers, W. H., 
and Tukey, J. W. (1972), Robust Estimates of Location: Survey and 
Advances. Princeton University Press, Princeton, New Jersey. 

4. Beaton, A.E., and Tukey, J.W. (1974), The firing of power series, meaning 
polynomials, illustrated on bandspectroscopic data. Technometrics, 16, 
147-185. 

5. Hampel, F. R., Ronchetti, E.M., Rousseeuw, P.J. and Stahel, W.A. (1986), 
Robust Statistics, The Approach Based on Influence Functions. John 
Wiley & Sons, New York. 



Insha Ullah, Muhammad F. Qadir, Asad Ali 

Pak. j. stat. oper. res.  Vol.II  No.2  2006  pp135-144 144

6. Huber P.J. (1973), Robust regression: Asymptotics, conjectures and 
Monte Carlo, The Annals of Statistics, 1, 799–821. 

7. Qadir, M.F. (1996), Robust Method for Detection of Single and Multiple 
Outliers, Scientific Khyber, 9 (2): 135-144. 

8. Rousseeuw P.J. (1985), “Multivariate estimation with high breakdown 
point,” in Mathematical Statistics and Applications, Vol. B (W. Grossmann, 
G. P.ug, I. Vincze, and W. Wertz, eds.), Reidel Publishing Company, 
Dordrecht, pp. 283–297. 

9. Rousseeuw P.J. and Yohai V.J. (1984), Robust regression by means of S-
estimators, in Robust and Nonlinear Time Series Analysis, (J. Franke, W. 
Hardle, and R. Martin, eds.), Lecture Notes in Statistics No. 26, Springer-
Verlag, New York, pp. 256–272. 

10. Rousseeuw, P.J. (1984), Least Median of Squares Regression, Journal of 
the American Statistical Association, 79, 871–880. 

11. Rousseeuw, P.J. and Leroy, A.M. (1987), Robust Regression and Outlier 
Detection. Wiley-Interscience, New York. 

12. Tukey, J. W. (1960), A survey of sampling from contaminated 
distributions, In I.Olkin, S. G. Goraye, W. Hoeffding, W. G. Madow, and H. 
B. Mann (Eds), Contribution to Probability and statistics, Essaye in Honor 
of Harald Hotelling, Stanford, CA: Stanford University Press. 

13. Yohai, V.J. (1987), High Breakdown Point and High Efficiency Robust 
Estimates for Regression, The Annals of Statistics, 15, 642-656. 


