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Abstract 
In this paper we present the comparison among the distributions used in hazard analysis. 
Simulation technique has been used to study the behavior of hazard distribution modules. The 
fundamentals of Hazard issues are discussed using failure criteria. We present the flexibility of 
the hazard modeling distribution that approaches to different distributions. 
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1.   Introduction 

The hazard function h(t) is the conditional probability of an item failing in the 
interval t to (t + dt) given that it has not failed by time t. This is also known as the 
instantaneous failure rate. Taking the bathtub curve, the early failure period has a 
decreasing hazard function as time goes by. The useful life period has a constant 
hazard function. The wear-out period has an increasing hazard function. The 
hazard function (HF) denoted by h(t), is defined as f(t)/R(t) . The units for h(t) are 
probability of failure per unit of time, distance or cycles. The hazard rate is 
defined as the probability per time unit that a case that has survived to the 
beginning of the respective interval will fail in that interval. Specifically, it is 
computed as the number of failures per time units in the respective interval, 
divided by the average number of surviving cases at the mid-point of the interval. 
This is the survival time at which the cumulative survival function is equal to 0.5. 
Other percentiles (25th and 75th percentile) of the cumulative survival function 
can be computed accordingly. The 50th percentile (median) for the cumulative 
survival function is usually not the same as the point in time up to which 50% of 
the sample survived. This would only be the case if there were no censored 
observation prior to this time.  
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2.   Theoretical Background 

2.1  Mathematical Function of Hazard  
This study is concerned with the hazard over time 0≥t . The reliability function 

)(tR  is the probability of a device not failing prior to some time t  is given by  
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By differentiating equation (1) it can be shown that 
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The probability of failure in a given time interval between 1t and 2t can be 
expressed by the reliability function 
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The rate, at which failures occur in the interval ( 1t , 2t ), the failure rate, )(tη  is 
defined as the ratio of probability that failure occurs in the interval, given that it 
has not occurred prior to 1t , the start of the interval, divided by the interval length. 
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where 12 ttt −=Δ , 1tt =  and ttt Δ+=2 . The hazard rate )(th  is the instantaneous 
failure rate, is defined as the limit of the failure rate as the interval length 
approaches zero. 
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This is one of the fundamental relationships in hazard analysis. The density 
function of the time to failure )(tf  and the reliability function )(tR , the hazard rate 
function for any time t can be found. The relationship is fundamental and 
important because it is independent of the statistical distribution under 
consideration. The differential equation tells us that the hazard rate is nothing 
more than a measure of the change in survivor rate per unit change in time. From 
equation (2) a general expression is derived for hazard (failure) rate. This can 
also be done for the reliability function )(tR . 
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under the conditions  1)0( =R , 0)0(ln =R . 

Eq.(4) is the general expression for the reliability function. If  )(th  can be 
considered a constant failure rate η , Which is true for many cases for electronic 
component, Eq.(4) becomes 

tetR η−=)(                                                                 (5) 

Eq.(5) is used quite frequently in reliability analysis, particularly for electronic 
equipment. However, the reliability analyst should assume himself that the 
constant failure rate assumption is valid for the item being analyzed by 
performing goodness of fit test on the data. 

2.2  Bathtub curve  
In practice, the patterns of failures over time are often classified into infant 
mortality, useful life and wear-out. These patterns can be recognized in 
mathematics by a combination of decreasing, constant, and increasing hazard 
function. The three patterns combine to produce the well-known bathtub curve 
shown in Fig. 1, Willey (1992). With a decreasing hazard function (i.e. a new item 
in this life period has a larger probability of failing than an old item), the left- hand 
section of the curve is called the infant mortality period 
 

 
 

Life (units can be time. distance, cycles, etc.) 
Fig. 1   Bathtub curve  
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During this period the poor quality components may be weeded out by a 'burn-in' 
process, which is often used in manufacturing, pre-delivery testing or is 
experienced very soon after an item comes into service. With a relatively even 
segment, the middle section of the curve is called the useful life period. In this 
zone, the hazard function seems to be stable. During this period the component 
has a constant hazard function, i.e. a new item in this life period has an equal 
probability of failing as an old item. Most of the components and systems, which 
fail in service, exhibit a hazard function, which takes a constant value, as shown 
by this section of the curve. The right-hand section of the curve, called the wear-
out period, has an increasing hazard function, i.e. a new item in this life period 
has a smaller probability of failing than an old item. During this period the failure 
is generally caused by factors such as fatigue, degradation, wear and the like. 

3.   Distributions of Hazard Analysis  

3.1  Analysis Output and Results 
In Weibull distribution when β  = 1, the distribution is the same as the exponential 

distribution for a constant hazard function and 
η
1)( =thw  so the exponential 

distribution is a special case of the Weibull distribution and the Weibull 
distribution can be treated as a generalization of the exponential distribution. 
When β  < 1, the hazard function is continually decreasing which represents 
early failures. When β  > 1, the hazard function is continually increasing which 
represents wear-out failures- In particular, when 2=β , it is known as the 
Rayleigh distribution. When β = 3.4 is the shape of the PDF is similar to the 
Normal PDF. These cases are called pseudo-symmetrical cases by Gumbel 
(1958). So the Weibull is a very flexible distribution. The two parameter 
generalized exponential (GE) distribution has been introduced and studied quite 
extensively by the authors (Gupta and Kundu, 1999, 2001). The different shapes 
of generalized exponential (GE) distribution are quite similar to Weibull density 
functions. When shape parameter 1=β , it coincides with the exponential 
distribution. The hazard function of a generalized exponential (GE) distribution 
can be increasing, decreasing or constant depending on the shape parameter 
similarly as a Weibull distribution. Therefore, generalized exponential (GE) 
distribution and Weibull distributions are both generalization of an exponential 
distribution in different ways. If it is known or apparent from the histogram that 
the data are coming from a right tailed distribution, then a generalized 
exponential (GE) distribution can be used quite effectively. It is observed that in 
many situations generalized exponential (GE) distribution provide better fit than a 
Weibull distribution. Therefore to analyze a skewed lifetime data an experimenter 
might wish to chose one of the two models. From the view of statistics, if the 
hazard functions of the underlying distribution approximates to any part of the 
bathtub curve (decreasing, constant or increasing hazard function) then this 
distribution might be applicable as a time-to-failure model. So certain 
distributions, which are often used in reliability and hazard, are investigated here.   
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Such distributions include the Uniform, Normal, Exponential, Rayleigh, Weibull, 
Erlang, Gamma, generalized exponential (GE) distribution, Loglogistic, 
Lognormal and others. The Uniform distribution has a rapidly increasing hazard 
function. The Normal distribution has a gradually increasing hazard function.  The 
Exponential distribution has a constant hazard function. The Rayleigh distribution 
has an increasing hazard function and is the special case of the Weibull 
distribution with shape parameter, β  = 2. The Erlang distribution has a very 
gradually increasing hazard function and is the special case of the Gamma 
distribution. The Weibull and Gamma distributions have decreasing hazard 
functions for 0 < shape parameters < 1, and constant hazard functions for shape 
parameters = 1, and increasing hazard functions for shape parameters > 1. Note 
that the Exponential distribution is a special case of the Weibull , Gamma  and 
generalized exponential (GE) distributions. The Loglogistic distribution has a 
decreasing hazard function when the shape parameter < 1 and has one mode 
when the shape parameter > 1 Cox. and Oakes, (1984). The Lognormal 
distribution has a plausible increasing hazard function when the shape 
parameter 4≥β , but a plausible decreasing hazard function when 4.0≤β . When 

≅β 0.8 to 2.5, the hazard function is near constant over most of the distribution. 
Hence the Uniform, Normal, Exponential, Rayleigh, Weibull, Erlang, Gamma, 
Loglogistic, Lognormal distributions all have appropriate hazard functions for 
modeling different phases in the life of a component. The hazard functions of the 
following distributions are shown in fig.(2)  where the legends, from the top to the 
bottom, are Uniform(0, 4), Normal(0, 1), Exponential (1), Rayleigh (1), Weibull (1, 
0.5), Weibull(1, 3), Earling(1), Loglogistic (1, 0.5), Loglogistic (1, 3), Lognormal 
(1, 4), Lognormal (1, 0.8) and Lognormal (1, 0.4) respectively. The value(s) in 
parenthesis is (are) the parameter(s) which are used to describe for each 
distribution.   

 

Fig. 2  The hazard function of the various distributions 
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From these statistical models, the Weibull and Gamma distributions cover all the 
phase of component life and they can represent all the time-to-failure data. 
However, the Weibull distribution is the most widely distribution used in industry. 
This is an important advantage of the life time distributions for modeling reliability 
and hazard function. The Weibull distribution is the most widely distribution used 
in industry. Two main reasons for the popularity of the Weibull distribution are 
that it has simple expressions and closed forms to model the probability density 
function (PDF), reliability function, cumulative distribution function (CDF) and 
hazard function. The Gamma distribution is not as popular as the Weibull 
distribution partly because its (CDF and hazard function are not expressible in a 
simple closed form and further it is very complicated for the case of dealing with 
incomplete data. Lawless, (1982) describe the Gamma distribution is therefore 
harder to handle than the Weibull distribution. The Lognormal distribution cannot 
represent lifetimes exactly; nevertheless it is often used satisfactorily to match 
shorter values of time-to-failure Lawless, (1982). The Lognormal distribution 
enables plausible and acceptably accurate conclusions to be drawn about some 
types of failure Lawless, (1982). The relationships between various distributions 
are shown in Fig. 3 where the direction of each arrow represents going from the 
general to a special case. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3   The relationship among various distributions 
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There are many publications that individually cover these distributions. However;         
few papers compare the differences among these distributions. All distributions, 
interestingly, can have frequency curves which are skewed (the Weibull can be 
positively or negatively skewed but the Lognormal can only be positively 
skewed). The generalized exponential (GE) distribution, Gamma and Weibull 
distributions are all generalization of an exponential distribution in different ways. 
If it is known or apparent from the histogram that the data are coming from a right 
tailed distribution, then a generalized exponential (GE) distribution can be used 
quite effectively. It is observed that in many situations generalized exponential 
(GE) distribution provide better fit than a Weibull and Gamma distributions.   

4.   Conclusions           
In this paper we have discussed the problem of Comparative Distributions of 
Hazard Modeling between overlapping families of life time distributions functions. 
The life time distributions are extensively used in reliability and hazard life 
testing. The life time distributions are fitted the life data very well. From the above 
comparison of these Comparative Distributions of Hazard Modeling Analysis we 
conclude that the Weibull, Erlang, Gamma, generalized exponential (GE) 
distributions are flexible distributions that approaches to the different distributions 
of hazard modeling. The Lognormal distribution cannot represent lifetimes 
exactly. It is used satisfactorily to match shorter values of time-to-failure data. 
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