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Abstract 

A new five parameter model is proposed and stutied. The new distribution generalizes the Weibull Lomax 

distribution introduced by Tahir et al. (2015) and is referred to as transmuted Weibull Lomax (TWL) 

distribution. Various structural properties of the new model including ordinary and incomplete moments, 

quantiles, generating function, probability weighted moments, Rényi and q-entropies and order statistics are 

derived. We proposed the method of maximum likelihood for estimating the model parameters. The 

usefulness of the new model is illustrated through an application to a real data set. 

Keywords:   Weibull Lomax, Probability Weighted Moments, Entropy, Order Statistics, 

Maximum Likelihood.  

1.   Introduction 

In fact, there are hundreds of continuous univariate distributions. However, in recent 

years, applications from the environmental, financial, biomedical sciences, engineering 

among others, have further shown that data sets following the classical distributions are 

more often the exception rather than the reality. Since there is a clear need for extended 

forms of these distributions a significant progress has been made toward the 

generalization of some well-known distributions and their successful application to 
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problems in areas such as engineering, finance, economics and biomedical sciences, 

among others. 

 

This paper aims to introduce a new generalization to the Lomax distribution using the 

transmutation map approach introduced by Shaw and Buckley (2007). The new model 

which generalizes the Weibull Lomax (WL) distribution introduced by Tahir et al. (2015) 

is referred to as the transmuted Weibull Lomax (TWL) distribution. 

 

The Lomax (or Pareto II) distribution has wide applications in many fields such as 

income and wealth inequality, medical and biological sciences, engineering, size of cities 

actuarial science, lifetime and reliability modeling. In the lifetime context, the Lomax 

model belongs to the family of decreasing failure rate see Chahkandi and Ganjali (2009) 

and arises as a limiting distribution of residual lifetimes at great age see Balkema and de 

Hann (1974). For more information about the Lomax distribution and Pareto family are 

given in Arnold (1983) and Johnson et al. (1994). 

 

Many authors constructed generalizations of the Lomax distribution. For example,  

Abdul-Moniem and Abdel-Hameed (2012) studied exponentiated Lomax (EL), Ghitany 

et al. (2007) introduced Marshall-Olkin extended Lomax (MOEL), Lemonte and 

Cordeiro (2013) investigated beta Lomax (BL), Kumaraswamy Lomax (KwL) and 

McDonald Lomax (McL) and Cordeiro et al. (2013) introduced gamma Lomax (GL) 

distributions. Recently Tahir et al. (2015) introduced the Weibull Lomax (WL) 

distribution and studied its mathematical and statistical properties. 

 

The cumulative distribution function ( )cdf  (for    ) of the Weibull lomax distribution 

is given by 

( , , , , ) = 1 exp 1 1

b
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where   is a scale parameter, ,a  and  b are shape parameters. The corresponding 

probability density function ( ) pdf is given by 
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 (2) 

 

The aim of this paper is to provide more flixible extension of the Weibull Lomax (WL) 

distribution using the transmutation map technique introduced by Shaw and Buckley 

(2007) called transmuted Weibull Lomax (TWL) distribution. 
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According to the Quadratic Rank Transmutation Map, (QRTM), approach a random 

variable X  is said to have transmuted distribution if its cumulative distribution function 

( )cdf  is given by 

     2( ) = 1 ,F x G x G x    

where ( )G x  is the ( )cdf  of the base distribution, which on differentiation yields 

   ( ) = 1 2 , 1,f x g x G x        

where ( )f x  and  ( )g x  are the corresponding pdfs  associated with   ( )cdfs F x  and ( )G x  

respectively. For more information about the quadratic rank transmutation map is given 

in Shaw and Buckley (2007). Observe that at  = 0,  we have the base distribution. 

 

Recently, various generalizations have been introduced based on the transmutation map 

approach. Afify et al. (2014) introduced the transmuted complementary Weibull 

geometric distribution and studied its mathematical. Ashour and Eltehiwy (2013) 

introduced the transmuted Lomax distribution. 

 

In this paper we provide mathematical and statistical properties of the exponentiated 

Weibull Lomax (TWL) distribution. The rest of the paper is outlined as follows. In 

Section 2, we define the subject distribution and provide the graphical presentation for its 

pdf  and hrf . In Section 3,  we provide a very useful expansions for the pdf  and cdf  

of the new model. Section 4 provides statistical properties including quantile functions, 

random number generation, ordinary and incomplete moments, moment generating 

functions, mean deviations, probability weighted moments and Rényi entropy are 

derived. In Section 5, the order statistics and its moments are discussed. The maximum 

likelihood estimates (MLEs) and the asymptotic confidence intervals of the unknown 

parameters are demonstrated in Section 6. In section 7, the TWL distribution is applied to 

a real data set to illustrate its usefulness. Finally, some concluding remarks are given in 

section 8. 

2.   The TWL Distribution 

The Transmuted Weibull Lomax (TWL) distribution and its sub-models are presented in 

this section. The random variable  .r v  X  is said to have an TWL distribution, denoted 

by ( , , , , , )X TWL x a b  : , if its cdf  is given by 
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The corresponding pdf  of X  is given by 
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 (4) 

where   is a scale parameter representing the characteristic life, ,  and   are shape 

parameters representing the different patterns of the TWL distribution and   is the 

transmuted parameter.  The reliability function (rf), and cumulative hazard rate function 

(chrf) of the .  r v X  are given by 
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respectively. 
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Figure 1 (a), (b), (c) and (d) provide some plots of the TWL density curves for different 

values of the parameters , , ,a    and b . Plots of the hazard rate function of TWL for 

selected parameter values are given in Figure 2. 

 
                      (a)                                                                                     (b)  

 
                      (c)                                                                                     (d)  

Figure 1:   Plots of the TWL density function for some parameter values. (a) For different values of ,a  

and b   with =1.5   and  = 4  . (b) For different values of ,a  and b   with = 2,3  and

 = 4,5 . (c) For different values of ,a  and b   with = 0.75   and  = 0.5  . (d) For different 

values of ,a  and b   with = 2   and  =1.  

 
                      (a)                                                                                     (b)  

 
                      (c)                                                                                     (d)  

Figure 2:   Plots of the TWL hazard rate function for some parameter values  
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3.   Mixture Representation 

The TWL density function given in (4) can be rewritten as 
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By inserting (1) and (2) in Equation (5), we obtain 
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Equation (6) can be expanded in power series as 
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By expanding the exponential function in L , we obtain 
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Inserting this expansion in Equation (6) and, after some simplification, we obtain 
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Appluing a power series expansion again, we get 
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Equation (7) can be rewritten as a mixture of exponentiated Lomax (EL) densities 
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 is the EL density with parameters ,a   and  1 .k b j   Therefore, the 

properties TWL distribution can be derived form those of the EL distribution. 

 

The cdf  of the TWL in (3) can be expressed in the mixture form 
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where 
 , , 1
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 is the cdf  of the EL with parameters ,a   and  1 .k b j   

4.   Statistical Properties 

Established algebraic expansions to determine some structural properties of the TWL 

distribution can be more efficient than computing those directly by numerical integration 

of its density function. The statistical properties of the TWL distribution including 

quantile and random number generation, moments, factorial moments, cumulants, 

moment generating function, incomplete moments, mean deviations, probability 

weighted moments and Rényi and q entropies are discussed in this section. 
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4.1  Quantile and Random Number Generation 

The quantile function ( qf  ) of ,X  where ( , , , , ),X TWL a b  :  is obtained by 

inverting (4) as 

  
1/

1/
1/

= ln 1 1 1 , 0 1,
b

a

qx D q



          

    (11) 

where     21
= 1 1 4

2
D q  


     and 

0
lim = .D q


 

By putting = 0.5q  in Equation (11) we can get the median of  .  

 

Simulating the TWL random variable is straightforward. If U  is a uniform variate on the 

unit interval (0,1),  then the random variable = qX x  follows (5), i.e. 

( , , , , ).X TWL a b  :  

4.2 Moments 

The  th moment, denoted by , 
'

r of the TWL ( , , , , , )a b x    is given by the following 

theorem. 

Theorem 1. If X  is a continuous random variable has the TWL ( , , , , , ), a b x   then the 

 th non-central moment of ,X  is given as follows 

 , , , , , 1
, , , =0 0

= ( ) .
' r

r j i k l a k b j
j i k l

u x g x dx





         (12) 

using (7) we obtain (for r  )  

     , , ,

=0 , , , =0

= 1 1 1 , 1
r

' mr

r j i k l

m j i k l

r m r
k b j u B k b j

m
 



    
             

  
   (13) 

 

Setting =1r  in (13), we have the mean of X . Then we can get the variance by the 

relation    2 2( ) = .Var X E X E X  

 

Based on the above Theorem (1) the coefficient of variation, coefficient of skewness and 

coefficient of kurtosis of the TWL ( , , , , , )a b x    distribution can be obtained according 

to the well-known relations. 

Corollary 2.  Using the relation between the central moments and non-centeral moments, 

we can obtain the  th central moment, denoted by ,nM  of a TWL random variable as 

follows 

     
=0

= = ,
n

n n r r

n

r

n
M E X E X

r
 

 
  

 
  
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then, 

   1

=0

= 1
n n r

' 'n r

n r

r

n
M

r
 


 

 
 

       (14) 

and cumulants ( n ) of X  are obtained from (13) as 

1

=0

1
= ,

1

n
' '

n n r n r

r

n

r
   





 
  

 
        (15) 

where 1 1=
'

  thus 2 2 1 3 3 2 1 1

2 3= , = 3
' ' ' ' ' '

          etc. The skewness and kurtosis 

measures can be calculated from the ordinary moments using well-known relationships. 

 

The  th descending factorial moment of  (X for  =1,2,...)n  is 

 
        1

1
=0

= = 1 ... 1 = , ,
n

' '

j

j

E X E X X X n s n j           (16) 

where  

    
=0

1
, = .

!

j
n

j

x

d
s n j j

j dx

 
 
 

 

is the Stirling number of the first kind. 

4.3   Moment Generating Function 

The moment generating function ( )mgf  of the TWL distribution is given by the 

following theorem. 

 

Theorem 2. If X  is a continuous random variable has the TWL ( , , , , , ), a b x    then 

the moment generating function ( ) mgf of , X denoted by    = ,tX

XM t E e  is given as 

follows 

 
   

   
 

 

1
, , , , , =0

1

, , ,

1 ! 1
=

1 1 1 1
.

m

X r
j i k l m r

r

j i k l

r k b j
M t

k b j m
u t

rm










 

    

             
  


   (17) 

4.4  Incomplete Moments 

The important application of the first incomplete moment refers to the Bonferroni  and 

Lorenz curves. These curves are very useful in economics, reliability, demography, 

insurance and medicine. The answers to many important questions in economics require 

more than just knowing the mean of the distribution, but its shape as well. This is obvious 

not  only in the study of econometrics but in other areas as well. The  ths  incomplete 

moments, denoted by   , s t of the TWL . .r v  is given by 

   
0

= ,
t

s

s t x f x dx   
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Using Equation (8) and the lower incomplete gamma function, we obtain(for s  ) 

   

       , , ,

=0 , , , =0

= 1 1 1 , 1
r

ms

s j i k l

m j i k l

s m s
t k b j u B k b j

m
 



    
             

  
   (18) 

 

Another application of the first incomplete moment is related to the mean  residual life 

and the mean waiting time given by     1 1; = 1 / ( ; )m t t R t t     and 

      1 1; = / ; ,M t t t F t    respectively. 

 

Furthermore, the amount of scatter in a population is evidently measured to some extent 

by the totality of  deviations from the mean and median.  The mean deviations about the 

mean    1=
'

X E X   
 

 and about the median     =X E X M   of X can 

be, used as measures of spread in a population, expressed by 

       1 1 1 1 1
0

= = 2 2 ,
' ' ' '

X X f x dx F     


   

and 

     1 1
0

= = 2 ,
'

M X X M f x dx M  


   

respectively, where  1 =
'

E X  comes from (13),  1

'

F   is simply calculated from (4), 

 1 1

'

   is the first incomplete moments and M  is the median of X . 

4.5  Probability weighted moments 

The probability weighted moments (PWMs) are used to derive estimators of the 

parameters and quantiles of generalized distributions. These moments have low variance 

and no severe bias, and they compare favorably with estimators obtained by the 

maximum likelihood method The ( ; )s r th  PWM of X  

( for 1, 0)r s  is formally defined by  

       ,
0

= = .
s sr r

r s E X F x x F x f x dx


 
    

 

We can write from (3) 

   
, =0

,

( , , , , , ) = 1 1

exp 1 1 .

w h s ws w

w h

w h

b

s w s
F x a b

w h

x
ah





    




   

   
  

 
      

        
       

 


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Therefore, from Equations (3) and (4) we can express ,r s  as 

 
  ,

,
0

, =0

= , , , , 1 , .
1

w h r

r s

w h

x f x a h b dx
h


   

 




   

 

By using (13) we obtain (for r  )  

 
 

 , :

, , , , , =0 =0

1
= B 1 , 1 ,

1

w h
r

r

r s j w

j i k l h w m

s w s m r
s k b j

w hh
 




      

            
   

where 

   

     

   

11

:

1 2 1
=

! !

1 1 1 11
.

1 1 1

j i k l s w ii k w

j w

k

a
s

j k

k b j l hi

l i k b k b j

 
      

                 
             

 

4.6  Rényi and q-Entropies 

The Rényi entropy of a random variable X  represents a measure of variation of the 

uncertainty. The Rényi entropy is defined by  

   
1

= log , > 0 and 1.
1

I X f x dx

  







   

 

Therefore, the Rényi entropy of a random variable X   which follows the TWL is given 

by 

    , , ,

, , , =0

1
= log ,

1
j i k l

j i k l

I X b


  
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 

  
  

where 
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The q-entropy, say  qH X , is defined by 

   
1

= log 1 , > 0 and 1.
1

q

qH X f x dx q q
q


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where  

       

 

   

   
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 
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  
       

    

             
               

 

5.   Order Statistics 

If 1 2, ,..., nX X X  is a random sample of size n  from the TWL distribution and 

     1 2
, ,...,

n
X X X  be the corresponding order statistics. Then the pdf  of jth order 

statistics denoted by  : :, i n i nX f x  is given by    

 
 

  1

:

=0

1( )
= 1 ( )

B , 1

n i
j i j

i n

j

nf x
f x F x

ji n i


 

 
  

   
     (19) 

 

Therefore, we can write 

 1
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1
( ) = 1 exp 1 1

b
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m

j l i x
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m






 

 
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      

 

  

and then by inserting (4) in equation (19), we obtain 

   : 1

=0

= ( , , , , 1 , ),i n m

m

f x b f x a m b  

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where 
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 
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  

and   ( , , , , 1 , ) f x a m b    denotes the TWL density function with parameters

  , , , 1a m    and .b  So the density function of the TWL order statistics is a mixture 

of WL densities. Based on equation (20), we can obtain some structural properties of 

:i nX  from those TWL properties . 

 

The  th moment of :i nX  (for <r  ) follows from (14) and (20) as 

       : 1 , , ,

=0 , , =0
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  
 

 

(21) 

 

The L-moments are analogous to the ordinary moments but can be estimated by linear 

combinations of order statistics. They exist whenever the mean of the distribution exists, 

even though some higher moments may not exist, and are relatively robust to the effects 
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of outliers. Based upon the moments in Equation (21), we can derive explicit expressions 

for the L-moments of X  as infinite weighted linear combinations of the means of 

suitable TWL distributions. They are linear functions of expected order statistics defined 

by   

   
1

:

=0

11
= 1 , 1.

r
d

r r d d

d

r
E X r

dr



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 
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The first four L-moments are given by

     1 1:1 2 2:2 1:2 3 3:3 2:3 1:3

1 1
= , = , = 2

2 3
E X E X X E X X X      and  4 4:4 3:4 2:4 1:4

1
= 3 3 .

4
E X X X X     

One simply can obtain the  's for X  from Equation (21) with = 1.q  

6.   Estimation 

The maximum likelihood estimators (MLEs) for the parameters of the TWL

( , , , , , )a b x    is discussed in this section. Let  1= ,..., nX XX  be a random sample of 

this distribution with unknown parameter vector  = , , , , .
T

a b   
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Then, the log-likelihood function, ,  becomes: 
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We can find the estimates of the unknown parameters by setting the score vector to zero, 

  = 0,U  and solving them simultaneously yields the ML estimators  ̂  ̂  ̂  ̂ and  ̂. 

These equations cannot be solved analytically and statistical software can be used to 

solve them numerically by means of iterative techniques such as the Newton-Raphson 

algorithm. For the five parameters TWL distribution all the second order derivatives 

exist. 

 

For interval estimation of the model parameters, we require the 5 5  observed 

information matrix     =  for , = , , , , .rsJ J r s a b     Under standard regularity 

conditions, the multivariate normal  
1

5(0, )N J 


 distribution can be used to construct 

approximate confidence intervals for the model parameters. Here,  J   is the total 

observed information matrix evaluated at .  Therefore, Approximate 100(1 )%  

confidence intervals for , , ,a    and b  can be determined as: 

 ̂    
 

√          ̂    
 
√           ̂    

 

√   ,   ̂    
 

√      and   ̂    
 

√    , where   
 

 

is the upper  th percentile of the standard normal distribution.  
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7.   Data Analysis 

In this section, we provide an application of the proposed TWL distribution to show the 

importance of the new model, where the TWL model is compared with other related 

models, namely Weibull Lomax (WL), McDonald Lomax (McL), transmuted 

complementary Weibull geometric (TCWG), modified beta Weibull (MBW) and Lomax 

(L) distributions. 

 

The pdf s of these, non-nested, models are given as follow: 

• The transmuted complementary Weibull geometric (TCWG) distribution 

introduced by Afify et al. (2014). The pdf of TCWG distribution is 

 
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(where > 0,x  , , > 0, 1a    ). 

• The modified beta Weibull (MBW) distribution introduced by Khan (2015). The 

pdf of MBW distribution is 
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(where > 0,x  , , , , > 0a b   ). 

• The McDonald-Lomax (McL) distribution introduced by Lemonte and Cordeiro 

(2013). The pdf of McL distribution is 
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(where > 0,x  , , , , > 0a b   ). 

The data set (gauge lengths of 10 mm) from Kundu and Raqab (2009). This data set 

consists of, 63  observations: 1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 

2.397, 2.445, 2.454, 2.474, 2.518, 2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 

2.659, 2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 3.030, 3.125, 

3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 

3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 

4.225, 4.395, 5.020. This data set is previously studied by Afify et al. (2015) to fit the 

exponentiated transmuted generalized Rayleigh (ETGR) distribution. 
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In order to compare the distributions, we consider some criteria like  2 .   

(Log-likelihood), AIC  (Akaike Information Criterion) and CAIC  (the consistent Akaike 

Information Criterion). furthermore, We also consider the Cram ér--von Mises   W 

 
and 

Anderson--Darling   A

 
statistics. The statistics W 

 and A  are described in details in 

Chen and Balakrishnan (1995). In general, the smaller the values of these statistics  

( AIC , ,CAIC W   and A ), the better the fit to the data, where 

 = 2 2 , = 2 2 / 1 ,AIC k CAIC kn n k       
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where  denotes the log-likelihood function evaluated at the maximum likelihood 

estimates, k  is the number of parameters, n  is the sample size and  =i jz F y  where the 

jy  values being the ordered observations. 

 

Table 1 lists the numerical values of the  2 . , AIC , ,CAIC W   and A , whilst the 

MLEs and their corresponding standard errors (in parentheses) of the model parameters 

are shown in tables 2, respectively. These numerical results are obtained using the 

MATH- CAD PROGRAM. 

Table 1:  The statistics  2 . , AIC , ,CAIC W   and A  for gauge lengths of 10 mm 

data set 

Model Goodness of fit criteria 

   2 .  AIC  CAIC  W 
 A  

TWL 119.688  129.688  130.741  0.10719  0.73072  

WL 121.787  129.787  130.476  0.1174  0.81217  

MBW 125.917  135.917  136.97  0.15171  1.04361  

TCWG 126.895  134.895  135.585  0.17139  1.17435  

McL 130.597  140.597  141.65  0.10814  0.81415  

L 266.921  270.921  271.121  0.50412  7.6338  
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Table 2:  MLEs and their standard errors (in parentheses) for gauge lengths of 10 

mm data set 

Model Estimates 

  ̂  ̂   a  b  

TWL 0.3922  0.6603  0.7364  0.5287  8.4451 

  0.339   1.174   0.286   3.32   4.397  

WL 0.2471  0.3255  -- 8.003  10.1306  

  0.06   0.571  --  49.403   4.602  

MBW 1.8974  5.2354  17.2067  6.4617  0.0514  

  0.283   0.435   13.115   2.277   0.034  

TCWG   0.2022    3.3482    0.0001    0.3876   --  

   0.217     0.783     0.496     0.069    --  

McL   45.9249    48.3024    353.1435    18.1192    195.4633   

   59.312     63.047     375.678     8.855     123.217   

L   2545.5181    7786.421    --   --   --  

   16520     50540    --   --   --  

 

Table 1 compares the TWL model with the WL, McL, TCWG, MBW, and Lomax 

models. We note that the TWL model gives the lowest values for the AIC , ,CAIC W   

and A  statistics (except CAIC ) among all fitted models. So, the TWL model could be 

chosen as the best model. 

8.   Conclusions 

In this paper, We propose a new five-parameter model, called the transmuted Weibull 

Lomax (TWL) distribution, which extends the Weibull Lomax (WL) distribution 

introduced by Tahir et al. (2015). An obvious reason for generalizing a standard 

distribution is the fact that the generalization provides more flexibility to analyze real life 

data. We provide some of its mathematical and statistical properties. The TWL density 

function can be expressed as a mixture of exponentiated Lomax (EL) densities. We 

derive explicit expressions for the ordinary and incomplete moments, factorial moments, 

cumulants, generating function, probability weighted moments, Rényi and q-entropies. 

We also obtain the density function of the order statistics and its moments. We discuss 

maximum likelihood estimation. The proposed distribution was applied to a real data set; 

it was shown to provide a better fit than several other related models and non-nested 

models. We hope that the proposed model will attract wider application in areas such as 

engineering, survival and lifetime data, meteorology, hydrology, economics (income 

inequality) and others. 
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