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Abstract 

In this paper, ordered categorical variables are used to compare between linear with covariate and nonlinear 

interactions of covariates and latent variables in Bayesian structural equation models. Gibbs sampling 

method is applied for estimation and model comparison. Hidden continuous normal distribution (censored 

normal distribution) is used to handle the problem of ordered categorical data. Statistical inferences, which 

involve estimation of parameters and their standard deviations, and residuals analyses for testing the 

selected model, are discussed. The proposed procedure is illustrated by a real data. Analyses are done by 

using OpenBUGS program. 

Keywords:  Structural equation models, Bayesian analysis, latent variables, Gibbs 

sampling, ordered categorical data. 

1. Introduction 

Structural equation modeling (SEM) is a statistical approach to testing hypotheses about 

the relationships among observed and latent variables. Observed variables also called 

indicator variables or manifest variables. Latent variables also denoted as unobserved 

variables or factors. Examples of latent variables in education are math ability and 

intelligence and in psychology are depression and self confidence. The latent variables 

cannot be measured directly. Researchers must define the latent variable in terms of 

observed variables (Khine, 2013). 

 

At present, most statistical theory and computer software in the field of SEMs are based 

on models that involve only linear relationships among the manifest and the latent 

variables. More statistically sound methods for linear and nonlinear SEMs and factor 

analysis have been proposed by Lee and Song (2003), Lee and Song (2005), Lee (2006) , 

Lee and Tang (2006(, Cai et al. (2008( , Lee et al. (2009), Lee et al. (2010), respectively. 

We used the Bayesian approach to develop methods for statistical inference. MCMC 

methods, such as the Gibbs Sampler )Geman and Geman, 1984( is used in this paper. 

Theoretically, in the light of the extension of simple linear regression to multiple 

regression and nonlinear regression, the importance of generalizing linear structural 
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equation models to nonlinear models that include nonlinear terms of the latent variables 

is obvious. Practically, nonlinear relationships such as quadratic and interaction terms 

among the variables are important in establishing the substantive theory in many areas. 

The rapid growth of SEMs is due to the demand of subtle models and the related 

statistical methods for solving complex research problems in various fields. 

 

The main objective of this paper is to propose a Bayesian approach for analysing linear 

and nonlinear SEMs with ordered categorical variables. The Deviance Information 

Criterion (DIC; see Spiegelhalter et al., 2002) will be used for model comparison. 

 

The main idea is to handle the ordered categorical variables in the Bayesian analysis and 

to treat the underlying latent continuous measurements as hypothetical missing data and 

augment them with the observed data in the posterior analysis. 

 

The paper is organized as follows. Model Description is described in section 2.  Bayesian 

estimation of structural equation models which contain Linear and nonlinear models are 

described in Section 3. Models comparison using (DIC) are described Section 4. A case 

study is presented in section 5. Empirical results, which are obtained from a case study, 

are discussed in Section 6. Some concluding remarks are given in section 7.  

2. Model Description 

Consider the following measurement equation for a 1p   manifest random vector iy  

1,...,n,i i iy w i    
      

(1) 

where ( 1)p   is the vector of intercepts, ( )p q   is the factor loading matrix, 

( 1)iw q   is a latent random vector and ( 1)i p   is a random vector of error 

measurements with distribution [0, ],N     is diagonal and i is independent with iw . 

We let 1( 1)i q   and 2( 1)i q   be latent subvectors of iw , and consider the following 

structural equation: 

 
( , )i i i i iF x              (2) 

Where 1 1( )q q   and 1 2( )q q   are matrices of regression coefficients, i  and i  are 

independently distributed as [0, ]N   and [0, ]N  , where
   is a diagonal covariance 

matrix. It is assumed that 
0 1q     is a nonzero constant that is independent with 

elements in . 1( )T

i ix x is a vector of covariate. 

Let 1( ,..., )nY y y  is underlying latent continuous measurements are unobservable. The 

information associated with y is given by an observable ordered categorical vector 

1( ,..., )nZ z z . That is, any latent variable may have continuous and/or ordered 

categorical manifest variables as its indicators. The relationship between y and z is 

defined by a set of thresholds as follows: 
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  

   
       

    (3) 

 

Where for 1,..., , kk s z
 

is an integral value in {0,1,..., }kb  and 

1,0 ,1 , ,...
k kk k k b k b   


    . In general, we set 

1,0 ,,
kk k b 


   , For the kth 

variable, there are 1kb   categories which are defined by the unknown thresholds
,k j . The 

integral values {0,1,..., }kb
 
of kz

 
are just used for specifying the categories that contain 

the corresponding elements in ky
 
(Lee, 2007). 

 

It has been pointed out by Lee et al. (1990) that single-sample models with ordered 

categorical variables are not identified without imposing identification conditions. This is 

also the case for multi-sample models. To solve this problem, we use the common 

method (see, for example, Lee et al., 1995; Shi and Lee, 1998) of fixing some thresholds 

at preassigned values. For convenience, we assume that the positions of the fixed 

elements are the same for each group. 

3. Bayesian estimation of structural Equation models 

The objective of this section is to describe a Bayesian approach for analyzing the 

preceding nonlinear structural equation models in the context of ordered categorical data. 

Nice features of a Bayesian approach include the following: (a) Prior knowledge can be 

directly incorporated in the analysis. As a result, more accurate parameter estimates can 

be obtained under situations with good prior information; (b) As mentioned by many 

articles on Bayesian analysis of structural equation models (Lee, 2006; Lee and Shi, 

2000; Lee et al., 2010; Lee et al., 2007; Song and Lee, 2002, 2004; Song et al., 2011; 

Yang and Dunson, 2010), the sampling-based Bayesian methods do not rely on 

asymptotic theory; and (c) The Bayesian estimates and the ML estimates have the same 

optimal asymptotic properties. 

 

We will utilize the useful strategy of data augmentation described in the Bayesian 

estimation of SEMs with ordered categorical variables. Let 1( ,..., )nZ z z  be the 

ordered categorical data matrix, and let 1( ,..., )nY y y
 

and 1( ,..., )nw w
 

be the 

matrices of latent continuous measurements and latent variables, respectively. The 

observed data [Z] is augmented with the latent data [Y, ] in the posterior analysis. The 

joint Bayesian estimates of  . To describe the Bayesian approach for the proposed 

nonlinear structural equation model, let 1{ ,..., }nZ z z
 

be the observed data set of 

ordered categorical variables, and   be vector that contains the unknown free parameters 

under the model M. 

In a Bayesian approach,   is considered random with a prior distribution and a prior 

density function, say ( )p  . Bayesian inference is based on the observed data Z and  

( )p  . 
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Let ( , )p Z   be the joint probability density function of Z and   under model M. Based 

on a basics in probability, ( , ) (Z | ) ( )p Z p p   , where (Z | )p   and ( | Z)p  are 

conditional density functions; it follows that  

log ( | Z) log (Z | ) log ( )p p p            (4)  

 

The function ( | Z)p   is called the posterior density function of the unknown parameters. 

In Equation (4) the posterior density function ( | Z)p   depends on likelihood function 

(Z | )p  and prior distribution ( )p  . The function (Z | )p   depends on the sample size, 

whereas ( )p  does not. For large samples, the prior of   plays a less important role, and 

the posterior density function ( | Z)p   is close to the likelihood function ( )p  . Thus, the 

Bayesian and ML approaches are asymptotically equivalent, and the Bayesian estimates 

have the same optimal asymptotical properties as the ML estimates. However, ( )p  plays 

a significant role in the Bayesian approach in the situations where the sample size is 

small, or the information given by ordered categorical data Z. 

 

In this article, we define the Bayesian estimate of   as the mean of the posterior 

distribution (called the posterior mean). For simple structural equation models, the 

posterior mean can be obtained through direct integration. However, due to the 

complexity of the proposed nonlinear structural equation model with covariates and 

dichotomous variables, the relating integral does not have a closed form. We apply some 

MCMC methods in statistical computing to solve this problem. Let iy be the unobserved 

variables that correspond to the manifest ordinal variables in iz , and let 1( ,..., )nY y y

and 1( ,..., )nw w . If we can draw a sufficiently large number of observations
( ) ( ) ( ){( , , ); 1,..., }t t tY t T    from the joint posterior distribution ( , , |Z)p Y  , then the 

Bayesian estimate of   and the standard error estimates can be obtained from the 

following sample mean and sample variance matrix, respectively:  

^
1 ( ) 1 ( ) ( )

1 1

, var( | ) ( 1) ( )( ) .
T T

t t t

t t

T Z T       

 

     
  

(5) 

 

It is necessary to specify the prior distributions for components in   when deriving the 

conditional distribution of   given ( , , )Y Z  in Step a. In general Bayesian analyses, 

the conjugate prior distributions have been found to be flexible and convenient 

(Broemeling, 1985). 

 

This kind of prior distribution has been widely applied to many Bayesian analyses in 

structural equation models (Lee and Song, 2004 ; Song and Lee, 2007). Hence, the 

following well-known conjugate prior distributions are used: 

0 0 0 0 0 0

1 1

0 0 0 0

( ) [ , ], ( ) [ , ], ( | ) [ , ],

( ) [ , ], ( ) [ , ]

k k k k k k k k

q k k k

p N H p N H p N H

p W R p Gamma

     



       

    

  

  
 

(6) 
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Where k  is the kth diagonal element of , k    and k   are the kth rows of   and 

 , respectively. 
2 2

0 01 0( ,..., ),pH diag    and
0 0 0 0 0 0 0 0 0, , , , , , , , ,k k k k k kH H       

and 0R are assumed to be given by the prior information. In general, prior information can 

be obtained from causal observation or theoretical consideration of experts, or the 

analyses of past data. As pointed out by Kass and Raftery (1995) , priors are often picked 

for convenience when there is a lack of accurate prior knowledge, because the effect of 

the priors in Bayesian estimation is small when the sample size is fairly large. For 

completeness, the conditional posterior distributions of ,Y and the components of  

based on the conjugate prior distributions. These results are useful for writing the 

computer program to implement the Gibbs sampler. 

 

In the Bayesian approach, we need to evaluate the posterior distribution [ , , ]Z   . This 

distribution is rather complicated. To capture its characteristics, we will try to draw a 

sufficiently large number of observations from it such that the empirical distribution of 

the generated observations is a close approximation to the true distribution. A good 

candidate for simulating observations from the posterior distribution is the Gibbs sampler 

(Geman and Geman, 1984), which iteratively simulates ,    and   from the full 

conditional distributions. However, owing to the presence of the ordered categorical 

variables, these conditional distributions are rather complicated to derive and simulating 

observations from them is difficult. This motivates the further augmentation of the latent 

matrix Y in the posterior analysis, and the consideration of the joint posterior distribution 

[ , , , ]Y Z   . To implement the Gibbs sampler for generating observations of this 

posterior distribution, we start with initial starting values (0) (0) (0) (0)( , , , )Y    , then 

simulate (1) (1) (1) (1)( , , , )Y    and so on according to the following procedure. At the mth 

iteration with current values ( ) ( ) ( ) ( ), , ,m m m mY    

1. Generate 
( 1)m from

( ) ( ) ( )( , , , Z)
m m mp Y     

2. Generate ( 1)m    from
( 1) ( ) ( )( , , , Z)
m m mp Y 


  

3. Generate ( 1) ( 1)( , )m mY    from ( 1) ( 1)( , , , Z)m mp Y   
   

(7) 

 

The cycle defined above generates ( 1) ( 1)( , , , Z)m mp Y    after the mth iteration. As m 

approaches infinity, the joint distribution of ( ) ( ) ( ) ( )( , , , )m m m mY   can be shown to 

approach the joint posterior distribution[ , , , ]Y Z   . (see Geman and Geman, (1984); 

Geyer, (1992((. 

 

The sequences of the quantities simulated from the joint posterior distribution will be 

used to calculate the Bayesian estimates and other related statistics. Convergence of the 

Gibbs sampler can be monitored by the plots of several simulated sequences of the 

individual parameters with different starting values. The sequences of the quantities 



Thanoon Y. Thanoon and Robiah Adnan 

Pak.j.stat.oper.res.  Vol.XII  No.1 2016  pp125-140 130 

simulated from the joint posterior distribution will be used to calculate the Bayesian 

estimates and other related statistics. 

4. Model Comparisons 

A model comparison statistic that takes into account the number of unknown parameters 

in the model is the DIC (see Spiegelhalter et al., 2002). This statistic is intended as a 

generalization of the Akaike Information Criterion (AIC; Akaike, (1973) . Under a 

competing model kM  with a vector of unknown parameters k  of dimension kd , let 
( ){ : 1,..., }t

k t T   be a sample of observations simulated from the posterior distribution. 

The DIC for kM is computed as follows: 

( )

1

2
log ( | , ) 2 ,

T
t

k k k k

t

DIC p Z M d
T




  
     

(8) 

 

In model comparison, the model with the smaller DIC value is selected. As mentioned in 

Spiegehalter et al. (2003), practical applications of DIC, it is important to note the 

followings: 

(a) If the difference in DIC is small, for example less than 5, and the models make very 

different inferences, then just reporting the model with the lowest DIC could be 

misleading. (b) DIC can be applied to non-nested models. (c) Similar to the Bayes factor 

(Kass and Raftery, 1995) BIC, and AIC, DIC gives a clear conclusion to support the null 

hypothesis or the alternative hypothesis. 

 

To illustrate the use of DIC for model comparison, we analyzed the same data by a linear 

and a nonlinear structural equation model with the same measurement model: 

1 1 1 2 2 3 3*x(i,1) ,i i i i i            
   (9) 

1 2 2 3 3 4 2 2 5 1 2 1 1

2 2 3 3 4 2 2

*x(i,1)+ *x(i,1)* + *x(i,1)* + *x(i,1)* + *x(i,1)* +

+ +

i i i i i i i i

i i i i i

             

       



 
   

(10) 

 

The DIC value corresponding to the linear and nonlinear structural equation model 

produced by OpenBUGS. The correct nonlinear structural equation model is selected. 

 

5. Case  Study and Example 

The quality of life data set was established by (Power et al,. 1999) to evaluate three latent 

variables 1, 2 3( , , )i i i    . Some of these variables are selected in this paper. The first three 

items (Q3 to Q5) are intended to address physical health, the next three items (Q6 to Q8) 

are intended to address psychological health, the three items (Q9, Q10, Q11) that follow 

are for social relationships, and the last one items (Q12) are intended to address 

environment. The instrument also includes two ordered categorical items for the overall 

QOL (Q1) and general health (Q2), giving a total of 11 items. All of the items are 

measured with a five-point scale (1 = ‘not at all/very dissatisfied’; 2 = ‘a 

little/dissatisfied’; 3 = ‘moderate/neither’; 4 = ‘very much/satisfied’; 5 = ‘extremely/very 
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satisfied’). The sample size of the whole data set is extremely large. To illustrate the 

Bayesian methods, we only analyze a synthetic data set with sample size n = 200.  

 

Our Bayesian linear & nonlinear SEMs defined in Equation (9) and Equation (10) 

respectively. Hence, some quadratic and interaction effects of the latent variables are 

considered. To illustrate the Bayesian methods in analyzing linear and nonlinear 

structural equation models with ordered categorical variables, we use a real data set that 

is related to random vectors 1 2 11( , ,..., )i i i iz z z z  , let  1 2 11( , ,..., )i i i iy y y y   be the 

latent continuous random vector corresponds to the ordinal variables 1 2 11, ,...,i i iz z z

where , i 1,...,niz   are ordered categorical variables that are related with 4 latent variables
 

1 2 3( , , , )i i i i iw     , 1 2 11( , ,..., )i i i i    , with the following values of the parameters in

1 2 11( , ,..., )      and 
1 2 11( , ,..., )        

     

11 12 13

21 22 23

31 32 33

   
 

     
 
                                                       

(11) 

 

The relationships of the latent variables in 1 , 2i( , )i i iw    are assessed by the nonlinear 

structural equation which is described in Equation (10). A covariate x (200*1) and those 

corresponding to 1 , 2  and 3
 

are 0 30  , 1

0R   8, respectively. The following 

accurate prior inputs of the hyperparameter values in the conjugate prior distributions of 

the parameters are considered: 

Prior I. Elements in 0 , 0k  and 0 k  in Equation (6) are set equal to the following 

values and initial values are equal to 1;  

 

Prior I. Elements in 0 , 0k  and 0 k  in Equation (6) are set equal to the true values;  

1

0 8R    ,
 0 0,u kH H and 0 kH   

are taken to be 0.25 times the identity matrices;  

0 10k  , 0 8k  , 0 30  . 

 

The prior is informative and can have a significant effect on the parameter estimates for a 

small sample size case. 

 

The parameter values were analyzed by OpenBUGS. In checking convergence, we 

observed that most parameters such as , , , ,      converged quickly see Figures 3 

and 4. Comparing the Bayesian analyses of structural equation models with data, the 

MCMC procedure for analyzing data required more iterations to converge. Bayesian 

estimates were obtained from T=10000 iterations after discarding 5000 burn-in iterations. 

The Bayesian estimates of nonlinear SEM with covariate and the 95% HPD intervals are 

presented in Table 1. The Bayesian estimates of  linear SEM with covariate and the 95% 

HPD intervals are presented in Table 2. Estimates of the latent variables were also been 

obtained from OpenBUGS. The performances of deviance information criterion when 

comparing linear and nonlinear models are presented in Table 3. 
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6. Results and Discussion 

The objective of this section is to present results of a case study to reveal the empirical 

performances of the Bayesian estimates and the DIC for model comparison. 

For linear and nonlinear SEMs, we have the following proposed models: 

1 1 1 2 2 3 3

1 1 1 2 2 3 3 4 1 2

1 1 1 2 2 3 3 4 1 3

1 1 1 2 2 3 3 4 2 3

1: *x(i,1) ,

2 : *x(i,1) ,

3 : *x(i,1) ,

4 : *x(i,1) ,

5 :

i i i i i

i i i i i i i

i i i i i i i

i i i i i i i

i

Model

Model

Model

Model

Model

        

           

           

           



    

     

     

     

1 2 2 3 3 4 2 2

5 1 2 1 1 2 2 3 3 4 2 2

*x(i,1)+ *x(i,1)* + *x(i,1)* + *x(i,1)* +

*x(i,1)* + + +

i i i i

i i i i i i i i

       

            



 
 
(12) 

 

In this paper, a Bayesian approach is introduced for analysing linear and nonlinear SEMs 

with ordered categorical variables. The Bayesian estimates of the unknown parameters 

and the Bayesian model selection statistic DIC are obtained using recently developed 

powerful tools in statistical computing. All the computational work can be accomplished 

via the recently developed and freely available software OpenBUGS. Therefore, our 

proposed method can be conveniently applied on real data. The purpose of this analysis is 

to compare between linear and nonlinear Bayesian SEMs with ordered categorical data. 

There are some limitations of the current analysis. First, due to the design of 

questionnaires and the nature of the problems in behavioral, educational, medical and 

social sciences, data are often in ordered categorical variables with observations in 

discrete form. In analyzing ordered categorical data, the basic assumption in SEM is that 

the data comes from a continuous normal distribution which is clearly violated, and 

rigorous analysis that takes into account the ordered categorical nature is necessary. 

 

Hence, Clearly, routinely treating ordered categorical variables as normal may lead to 

erroneous conclusions (see Lee et al., 1990; Olsson, 1979). 

 

A better approach for assessing this kind of discrete data is to treat them as observations 

obtained from a hidden continuous normal distribution with a threshold specification. 

Second, the current analysis was conducted under the normality assumption of the 

observed variables in the model. However, this assumption is likely to be violated. 

Developing a linear & nonlinear Bayesian approach to relax the normality assumption in 

NSEMs may represent a future research topic. 
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Figure 1:   The path diagram of linear SEM (model 1) 
 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The path diagram of nonlinear SEM (model 5). 
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 Figure 3. Sequences of (a) 1 ; (b) 2 ; (c)
1 ; (d) 12 ; and (e)  for linear SEM 



Bayesian Analysis of Linear and Nonlinear Latent Variable Models with Fixed Covariate and Ordered …….. 

Pak.j.stat.oper.res.  Vol.XII  No.1 2016  pp125-140 135 

iteration

5000 6000 8000
m

u
.y

[1
]

-0
.5

0
.5

1
.5

iteration

5000 6000 8000

la
m

[2
]

0
.5

1
.0

1
.5

iteration

5000 6000 8000

g
a

m
[1

]
-0

.5
0

.0
0

.5
1

.0

iteration

5000 6000 8000

p
h

x
[1

,2
]

0
.2

0
.6

1
.0

iteration

5000 6000 8000

s
g

d
0

.1
0

.3
0

.5

Figure 4. Sequences of (a) 1 ; (b) 2 ; (c) 1 ; (d) 12 ; and (e)  for nonlinear SEM 
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Table 1. Bayesian Estimation of nonlinear SEM with Ordered Categorical Variables  

 

 

Para Est. SD HPD Interval Para Est. SD HPD Interval 

μ1
 

0.504 0.261 [-0.083,0.975] 
ɸ12

 

015.0 01070 [01380,  01669 ] 

μ2
 

0.161 0.222 [-0.318,0.555] 
ɸ13

 

01307 01089 [01.70,  015.8 ] 

μ3
 

-0.097 0.072 [-0.236,0.044] 
ɸ21

 

015.0 01070 [01380,  01669 ] 

μ4
 

0.089 0.081 [-0.065,0.253] 
ɸ22

 

01683 0109. [01507,  01880 ] 

μ5
 

0.074 0.073 [-0.071,0.219] 
ɸ23

 

01370 01098 [01003,  01580 ] 

μ6
 

0.067 0.081 [-0.090,0.229] 
ɸ31

 

01307 01089 [01.70,  015.8 ] 

μ7
 

-0.021 0.075 [-0.168,0.125] 
ɸ32

 

01370 01098 [01003,  01580 ] 

μ8
 

0.099 0.080 [-0.060,0.256] 
ɸ33

 

01077 01.06 [01009,  01808 ] 

μ9
 

0.101 0.076 [-0.052,0.249] 
γ1

 

0.314 0.190 [-0.072, 0.665] 

μ10
 

-0.298 0.043 [-0.384,-0.212] 
γ2

 

0.449 0.362 [-0.270, 1.153] 

μ11
 

-0.216 0.047 [-0.307,-0.123] 
γ3

 

0.416 0.408 [-0.320, 1.259] 

λ 1
 

01836 0108. [01689,.1005] 
γ4

 

0.067 0.277 [-0.433, 0.633] 

λ 2
 

01988 01..3 [01783,.1006] 
β1 -0.076 0.064 [-0.191, 0.064] 

λ 3
 

01880 01.05 [01687,.1.00] 
β2 0.060 0.083 [-0.101, 0.224] 

λ 4
 

017.8 01087 [01555,01895] 
β3 -0.042 0.101 [-0.245, 0.152] 

λ 5
 

.1086 0108. [0193.,.1050] 
β4 -0.006 0.076 [-0.176, 0.135] 

λ6
 

01050 01097 [01087,01660] 
β5 0.001 0.069 [-0.133, 0.144] 

λ 7
 

01097 01.03 [01.03,01530] 
ψεδ 0.292 0.046 [0.215, 0.392] 

ɸ11 01580 01089 [01007,  01773 ] 
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Table 2. Bayesian Estimation of linear SEM with Ordered Categorical Variables  

 

 

Table 3.  The DIC Values for Linear and Nonlinear EMs with Ordered Categorical 

Variables and Covariates 

 
 

The results corresponding to the nonlinear SEM with covariates under Type I and II 

inputs, and ordered categorical variables are reported in Table (1). We observed that the 

SD values are very small in the nonlinear SEM.  

 

The results corresponding to the linear SEM and covariate under Type I and II inputs, and 

ordered categorical variables are reported in Table (2). We observed that the SD values 

are very small in the linear SEM with covariate.  

 

 

 Linear with covariates Nonlinear with covariates 

 
5011.0 5034.0 

Para Est. SD HPD Interval Para Est. SD HPD Interval 

μ1
 

0.090 0.238 [-0.416, 0.553] λ 6

 

0.452 0.097 [0.277, 0.657] 

μ2
 

-0.184 0.203 [-0.611, 0.208] λ 7

 

0.300 0.101 [0.126, 0.521] 

μ3
 

-0.180 0.072 [-0.319, -0.036] ɸ11

 

0.560 0.088 [0.407, 0.755] 

μ4
 

0.006 0.079 [-0.145, 0.165] ɸ12

 

0.502 0.072 [0.374, 0.658] 

μ5
 

-0.001 0.073 [-0.142, 0.144] ɸ13

 

0.315 0.091 [0.171, 0.525] 

μ6
 

-0.023 0.077 [-0.172, 0.130] ɸ21
 0.502 0.072 [0.374, 0.658] 

μ7
 

-0.094 0.071 [-0.234, 0.045] ɸ22

 

0.690 0.092 [0.528, 0.889] 

μ8
 

0.001 0.075 [-0.146, 0.150] ɸ23

 

0.370 0.103 [0.209, 0.610] 

μ9
 

0.010 0.071 [-0.131, 0.147] ɸ31
 

0.315 0.091 [0.171, 0.525] 

μ10
 

-0.328 0.042 [-0.411, -0.245] ɸ32

 

0.370 0.103 [0.209, 0.610] 

μ11
 

-0.239 0.046 [-0.327, -0.149] ɸ33
 

0.468 0.160 [0.255, 0.857] 

λ 1
 

01853 01080 [01703,  .10.0 ] γ1
 

0.298 0.186 [-0.065, 0.658] 

λ 2
 

01990 01..7 [01776,  .103. ] γ2

 

0.631 0.177 [0.292, 0.986] 

λ 3
 

01890 01.06 [0169.,  .1.08 ] γ3
 

0.261 0.170 [-0.067, 0.599] 

λ 4
 

017.. 01085 [01550,  01883 ] β1

 

0.007 0.058 [-0.104, 0.129] 

λ 5
 

.107. 01080 [019.6,  .1000 ] ψεδ 01087 01005 [010..,  01386 ] 
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The results corresponding to the linear and nonlinear SEM with covariates under Type I 

and II inputs, we observed that the SD values in linear SEM are smaller than the SD 

values for the nonlinear SEM with covariates. However, it is expected that the empirical 

performance would be worse with the nonlinear SEM with covariates.  

 

The HPD intervals of all the parameters were computed. We observed that the 

performances of the HPD intervals in linear SEM and covariate are satisfactory for 

ordered categorical variables. To reveal the performance of DIC for model comparison, 

we reanalysed the data sets via a nonlinear SEM and covariate in the structural equation 

(Model 5). The DIC values obtained were compared to those obtained under the correct 

model. Results are presented in Table 3.  

 

The model fitting DIC in linear SEM is less than the DIC value in nonlinear SEM in the 

ordered categorical variables. As a result, we observed the performance of DIC is not 

satisfactory and would be worse under nonlinear effect and ordered categorical variables. 

However, it performs very well with linear effect with covariate and ordered categorical 

variables.  

 

Convergence of the Gibbs sampler are monitored by the plots of several simulated 

sequences of the individual parameters with different starting values and are presented in 

Figures 3 and 4 respectively. Bayesian estimates were obtained from T=10000 iterations 

after discarding 5000 burn-in iterations in linear and nonlinear SEMs with covariates. 

7. Conclusions and Recommendations 

The Bayesian linear and nonlinear SEMs which involving covariates are very common in 

social and behavioural sciences. However, in SEM, examples that incorporate nonlinear 

and covariate terms of latent variables into structural equations exist. As pointed out by 

Bollen and Paxton (1998), Schumacker and Marcoulides (1998) among others, the lack of 

applications is not due to the failure of substantive arguments that suggest the presence of 

nonlinearity, rather the existing statistical methods are technically demanding and not 

well understood. In this paper, a Bayesian approach is proposed for analysing a linear and 

nonlinear, covariate models with ordered categorical variables. In addition to point 

estimation, we provide statistical methods to obtain standard deviation estimates, and 

model comparisons using the deviance information criterion (DIC). Owing to the 

complexity of the proposed model, as we have seen, causal relationships among the latent 

variables and the discrete nature of ordered categorical data manifest variables are 

alleviated by data augmentation with some MCMC methods. More specifically, the basic 

idea of our development is inspired by the following common strategy from recent work 

in statistical computing (see Rubin, 1991) that formulate the underlying complicated 

problem so that when augmenting the real observed data with the hypothetical missing 

data, the analysis would be relatively easy with the complete data. This strategy is very 

powerful and can be applied to other more complex models. 
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