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Abstract 
A model is usually only an approximation of underlying reality. To access this reality in an 
adequate way, research all over the world, in different dimensions, is in progress. Most of the 
diagnostic methods that are being used for the selection of variables to retain in the final model 
are either based on theoretical methods or they are graphical, that is why model assessing 
becomes difficult. As a result, the regressors in a model may get very large or very small in their 
number. The researcher, therefore, has to look at variety of options, and has to fit a lot of models 
and then is found muddled with the choice to which to select and which to reject. This work is 
based upon introducing a diagnostic procedure for subset selection due to which one may be 
successful in reducing the number of possible models to be fitted. This strategy consists of 
graphical as well as numerical measures; this combination helps much in reducing the number of 
regressors in the model as well as the number of models. We have also introduced some new 
approaches and thus a considerable reduction in the regressors by this method does not prohibit 
the researcher to include regressors of his own interest. 
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1.   Introduction 
In this article, we propose a strategy for the selection of independent variables in 
any model. Sometimes it was assumed that the variables which constitute the 
equation are chosen in advance i.e. independents in the model be fixed a priori. 
Examining the equation to see whether the function specification and the 
assumptions about the residuals, fulfill the requirements, cover the whole of the 
analytical process. In many applications of regression analysis however, the set 
of independent variables that constitute the model is not pre assumed. In these 
situations, previous experience in connection with underlying theoretical 
considerations can help the researcher/ analyst to specify the set of independent 
variables. Methods and criterion functions for subset selection are critically 
reviewed by Hocking (1976), Computational algorithms for subset selection are 
very well discussed by Miller (1984). Use of log linear polynomials very well 
explained by Ali A (1986). Stepwise Directed search which is a combination of 
forward selection and the stepwise backward elimination strategy described by 
Broerson (1984) but still the problem is there. Usually the problem consists of 
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selecting an appropriate set of independent variables from a set that quite likely 
include all the important variables but we can say, with some extent, that these 
all are not necessary to adequately model the response y. As Montgomery 
(2003), “if the objective is to obtain a good description of a given process or to 
model a complex system, a search for regression equations with small residual 
sum of squares is indicated”. We have used this fact while formulating our 
method. Stepwise regression is used to customize the computational efforts. This 
search method develops a sequence of regression models, at each step adding 
or deleting an x variable can be stated equivalently in terms of error sum of 
squares reduction, coefficient of partial correlation, or F statistic being  
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for addition in the next stage. We have also used the same idea in combination 
with the ratio of coefficient of determination and mean square of residuals. We 
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=  with the aforesaid ratio and thus formulated a new criteria. 

Xavier de Luna and Kostas Skouras (2003) have used the graphical tools on 
recursive prediction errors in combination with Schwarz’s (BIC) and Akaike’s 
information criteria (AIC) and proposed “k” potential strategies. It seems to be 
useful but we are concentrating ourselves to the initial selection of variables.  We 
are not discussing AIC, BIC and many other popular criteria because almost all 
of these have an extensive theoretical backgrounds. In comparison with all such 
methods, our strategy doesn’t require any tuff theoretical backgrounds; however, 
we have made comparisons with very popular Cp criterion because many 
authors proved it as a better criterion than AIC and BIC. Miller (1990), Fahrmeir, 
L & Tulz. Gerhard (1994), Mc. Cullagh et al (1989) and almost all statistical 
scientists unanimously describe that, the number of regressors must be as small 
as possible and R2 should be large, relatively. We have considered all of these in 
our analysis. 
 
While building a model, consideration should also be given to the function 
specification in variable selection because they both are linked together thus 
selection of variables or their form, are two problems which should be solved 
simultaneously, however for simplicity they should be treated sequentially. At the 
moment we confine ourselves to the selection of the variables not to the 
specification which is left for further research.  
 
An important situation arises when the investigator have some prior justification 
for using certain variables (justification may depend upon several factors 
including exploratory data analysis). Thus a model driven and exploratory driven 
analysis both be incorporated. So we are interested in screening the potential 
variables to obtain the model that contain the best subset among them via 
exploratory analysis. In short, in most of the problems there is no single 
regression model that is best in terms of various evaluation criteria that have 
been proposed. A great deal of judgment and experience with the system being 
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modeled is usually necessary to select an appropriate set of independent 
variables for a regression equation. 

2.   Methods  

2.1  Variable Selection Strategy 
Our strategy is very simple and concentrates on the strength of correlation of 
independent variables(x’s) with dependent variable(y) and upon the 
Multicollinearity of different independent variables. 
 
1. We just include those independents which have significant correlation (at 

5% or 1% level) with the dependent variable (they are treated as primary 
variables) and exclude the independents which don’t have significant 
correlation with dependent variable but have significant correlation with 
those independents which already have been declared as primary .these 
rejected variables are the main cause of reducing the total number of 
models to be fitted. 

2. If two primary variables are correlated, then we treat them independently 
as primary variable but both of them can not appear together in any 
model. 

3. If any pair of variables is significantly correlated and these don’t include 
any of the primary variables then both are included one by one in 
combination with primary variables, but not both at a time, because of the 
collinearity between them. In this way, they form two different sets of 
models i.e. they can combine with other variables which are not 
mulicollinear with them. If they are “m” pairs they form “m” groups with the 
same conditions. 

4. We include all those variables in the potential models which don’t have 
any correlation with dependent or other independent variables but these 
included variables are not considered to be the primary part of the model 
however they are necessary to combine with the primary variables. That 
is, they should not constitute the model independently without the primary 
variables but in combination with the primary variables. 
 

In the above paragraphs when we say multicollinearity or the correlation, we 
mean significant correlation between the two variables. 
 
As for example in the Hald’s data out of four independents ( 4321 and,, xxxx ) 
there should be sixteen possible models and many authors like (Montgomery 
(2003)) have fitted all the sixteen models and then searched by different criteria 
the most suitable set of independents in the final model. By our strategy we find 
that out of these 421 and, xxx  are significantly correlated with dependent variable 
but 42 and xx  are correlated so in our model 1x  is confirmed and from 42 and xx  
only one can appear hence we run two separate models 
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1. y on 21 and xx  
2. y on 41 and xx  
 

The above two models are our target models. So we have reduced sixteen 
models to only two models.  
 

3.  y on 1x  
4.  y on 2x  and  
5.  y on 4x  
 
Hence the above five models, in total, can be fitted by our strategy because in 
other combination 3x  may be present are there may be ( 42 and xx ) all of such 
combinations have already be rejected by our strategy. We have also applied full 
model for relative comparisons only. 

 
We have introduced some other criteria (these are explained in Explanation of 
the terms and methods)  
 

1.  C1, Criterion   
2.  D1, Criterion   
   
These are because for model fitting R2 should be large, MSE should be small, 
number of variables should be less and average gain by the independents should 
be large. 

So we have calculated the average gain by the independents as 
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ki ≤≤1  where k  represent the total number of independents in any model, and 
multiplied by 1C  in this way more precise model in the shape of D1, can be 
attained however, 1C  only can also provide best model. 
 
We have compared our scheme with the other standard procedures like forward 
selection, backward elimination and stepwise regression. Also we have 
compared the results give by Neter et al (1987), Montgomery et al (2003) and 
Anderson & Bancroft (1952) and found that our strategy is simpler and give at 
least the same results as by other well known schemes. We have used NewR2 
which was first introduced by M.J.R. Healy (1994) in our calculations but it does 
not help in any improvement. 
 
In order to explain the selection criteria and strategy for inclusion of independent 
variables, in any model we define the following terms. 

2.2  Explanation of the Terms and methods 
P= Number of parameters. 
MSE= Mean Square of residuals. 
R2= coefficient of determination. 
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 Where iB  is the modulus value of ith regression coefficient and )(. iBES  
represent its relevant standard deviation. 
 

PARAM: variables. 

The example of Hald’s data Definition of Variables: 
y:   Calories per gram of cement  
x1: Tricalcium aluminate 
x2: Tricalciam silicate 
x3: Tetracalcium aluminoferrite 
x4: Dicalcium silicate                          

Significant correlation* chart  
 y x1 x2 x3 x4 
y 1 .731** .816**  -.821** 
x1  1  -.824**  
x2   1  -.973** 
x3    1  
x4     1 

 

* Correlation here and afterward mean Pearson’s correlation 
** Correlation is significant at the 0.01 level (2-tailed) 

 
According to our strategy, x1, x2 and x4 be the primary variables, initially. the 
possible set of models exclude x3 because it is correlated with primary variable x1 
and hence potential variables of the model be x1, x2 and x4 however x4 have 
strong correlation with x2 this mean x1 is compulsory in the model and there is 
choice between x2 and x4. But x2 and x4 both should not be included in the model 
because they are correlation is significant the possible set of models might be 
only two. 
 

1.   y on x1, x2. 
2.   y on x1 and x4. 
 
However we include the final set of independent variables for further analysis as  

x1 
x2 
x4 
x1 & x2 
x1 & x4 
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P MSE PARAM R2 C1 D1 
1 115.6 x1 0.534 0.005 0.016
1 82.39 x2 0.666 0.008 0.038
1 80.35 x4 0.675 0.008 0.04 
2 5.79 x1, x2* 0.979 0.085 1.21 
2 7.476 x1, x4 0.972 0.065 0.747

           * the model, selected. 
 
Montgomery D. C. (2003) have fitted 16 models for the same set of data, he used 
various methods including BIC, AIC and Cp criteria, and found by fitting 16 
models, that the final model consist x1 and x2, We have also selected the same 
by fitting only five models. Montgomery D. C. (2003) have used well known Cp 
criteria while our’s strategy is more simple and easy as compared to Cp criterion.  

Scatter diagrams of Hald’s Data 
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While examining the scatter diagrams we see that linear trend is available only in 
x1, x2 and x4. Scatter diagrams reject the inclusion of x3 in potential models. So 
these can be used in initial selection of the variables in a potential model. 

NETER’s DATA Definition of variables: 
y:  Survival time, ly;-Log to the base 10 of y 
x1: Blood clotting score 
x2: Prognostic Index 
x3: Enzyme Function test 
x4: Liver Function Test 
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Significant correlation chart 
 ly x1 x2 x3 x4 
ly 1   .370**  
x1  1   .502** 
x2   1  .369** 
x3    1 .416** 
x4     1 

By our method, most favorite is x3 and be treated as primary variable. Now the 
candidates are x1, x2 and x4 which may combine with x3. Here, x4 is correlated 
with x3 so it is out from the model, now we include x1 & x2 with x3 because neither 
they are correlated with the Primary variable x3 nor with one an other. Our 
proposed model consists of maximum 4 models. They are as under 
x3  
x1 & x3 
x2 & x3 
x1, x2 & x3 

P MSE PARAM R2 C1 D1 
1 0.064 x3* 0.137 2.141 5.352 
2 0.066 x1, x3 0.137 1.038 1.321 
2 0.065 x2, x3 0.146 1.123 1.965 
3 0.066 x1, x2, x3 0.146 0.737 0.860 

                                 * the best model  
Neter et el (1987) selects the model x1, x2 and x3 by Cp criterion but in our 
analysis it is rejected by all our criteria and also by MSE, because MSE from our 
selected model is less than the Neter’s  model.  

Scatter diagrams of Neter’s data 
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Yes, scatter diagram help like the earlier and we can say that linear trend is 
available only in x3. 
 
If we combine the inference from histograms and scatter diagrams we can say 
that only x3 can be the member of our final selection. 

Anderson and Bancoft’s data Definition of variables: 
y:  Rate of cigarette burn in inches per 1000 seconds 
x1: Percentage of nitrogen 
x2: Percentage of chlorine 
x3: Percentage of potassium 
x4: Percentage of phosphorus 
x5: Percentage of calcium 
x6: Percentage of magnesium 

Significant correlation Chart 
 y x1 x2 x3 x4 x5 x6 
y 1  -.623** .487*    
x1  1    -.627** .604** 
x2   1     
x3    1  -.588** -.611** 
x4     1   
x5      1 .764** 
x6       1 

 

** Correlation is significant at the 0.01 level (2-tailed). 
*Correlation is significant at the 0.05 level (2-tailed). 
 
By our strategy we can fit only 12 rather than 64 models and our most favorite 
model must include x2 and x3, so these are treated as primary variables. Other 
possibilities are x1, x4, x5 and x6 to combine with x2 and x3. Since x5 & x6 both are 
correlated with x3 which is one of the primary variables, so x5 and x6 are excluded 
from the model. And x1 don’t have any correlation with x4 so it is included in the 
model. Now we look at x4 since it is not correlated with any other independent 
variable so it can be a candidate in possible models. Up to this moment there are 
only 4 variables in the model named x1, x2, x3 and x4. Now the required 
possibilities are only 12 because the models with out the combination with x3 are 
also excluded. 
 

x2 
x3 
x1 & x2 
x1 & x3 
x2 & x3 
x2 & x4 
x3 & x4 
x1, x2 & x3 
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x1, x2, & x4 
x1, x3 & x4 
x2, x3 & x4 
x1, x2, x3 & x4 
 

p MSE PARAM R2 C1 D1 
1 0.018 x2 0.389 21.611 82.598 
1 0.022 x3 0.237 10.773 28.94 
2 0.018 x1, x2 0.418 11.611 27.773 
2 0.022 x1, x3 0.29 6.5909 13.160 
2 0.013 x2, x3* 0.574 22.077 79.655 
2 0.016 x2, x4 0.464 14.5 40.769 
2 0.022 x3, x4 0.288 6.5455 11.898 
3 0.013 x1, x2, x3 0.606 15.538 44.290 
3 0.016 x1, x2, x4 0.485 10.104 21.378 
3 0.021 x1, x3, x4 0.33 5.2381 8.211 
3 0.012 x2, x3, x4 0.611 16.972 47.467 
4 0.012 x1, x2, x3, x4 0.636 13.25 31.158 

 
In the table above, MSE is minimum for  the set of regressors (x1, x2, x3, x4) and 
(x2, x3, x4) but on the behalf of MSE we can not say that the model which 
possesses only the minimum MSE is considered the best because in the 
traditional methods also, these sets of independent variables are not considered 
the best. Method of forward selection which is very well known, also rejects these 
sets of independent variables, and hence this method supports our strategy 
which is very simple in the form of C1 and D1. The Cp criterion was used on 
Anderson and Bancroft’s data by Ali A & Al Subaihi (2001) along with some other 
methods, they selected x1, x2 and x6 as the best set of variables, with no other 
details. 

Scatter Diagrams Anderson and Bancoft’s data 
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scatter of x3
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scatter of x5
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While examining the scatter diagrams we can say clearly that x2, x3 and x4 have 
linear trend. 
 
If we combine both the histograms and scatter diagrams, we may fairly say that 
model include x1, x2, x3 and x4 and thus in total 24 models required to be fitted 
rather than 26 

Relative Comparisons by: 
HALD’s data 

P MSE METHOD PARAM R2 C1 D1 
2 5.79 OURS x1, x2* 0.979 0.085 1.121 
2 7.476 Forward x1, x4 0.972 0.065 0.746 
2 5.79 Backward x1, x2 0.979 0.085 1.121 
2 7.476 Stepwise x1, x4 0.972 0.065 0.746 

Neter’s data 
P MSE METHOD PARAM R2 C1 D1 
1 0.064 OURS x3* 0.137 2.141 5.352 
1 0.064 Forward x3 0.137 2.141 5.352 
1 0.064 Backward x3 0.137 2.141 5.352 
1 0.064 Stepwise x3 0.137 2.141 5.352 
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Anderson and Bancroft’s data 
P MSE METHOD PARAM R2 C1 D1 
2 0.013 OURS x2, x3* 0.574 22.08 79.65 
2 0.013 Forward x2, x3 0.574 22.08 79.65 
3 0.011 Backward x2, x3, x5 0.645 19.55 47.01 
2 0.013 Stepwise x2, x3 0.574 22.08 79.65 

 

*model selected as most suitable, by all our criteria  
 
While comparing all three tables above, we can say easily that our strategy is 
simpler in application as well as in understanding and give the best possible 
results while selecting the variables in any model. Although with larger number of 
regressors it is difficult to decide whether to retain any regressors in the model or 
to drop it out, but it is applicable and as a result possible number of models 
reduce dramatically.  
 
We have also proposed the graphical method which is also applicable. Although 
it is not new strategy because most of the statisticians have suggested it as 
primary tool but it is presented here as an alternative to some well sophisticated 
techniques like forward selection, backward elimination and stepwise regression.   
 
Our graphical strategy is not so powerful but the numerical one is quite 
comparable to the well sophisticated techniques as mentioned earlier.  
 
We can also compare our strategy with well known Cp criterion on Hald’s data 
,as discussed by  Montgomery (2003) and find that our strategy is better than Cp, 
as in Cp criterion we have to fit 16 models and then to select x1 & x2 as 
regressors but by our strategy, the same is achieved by fitting only 5 models. 
 
We can also make the same comparison on Neter’s data and find our strategy, 
even more suitable, because Neter selects a model consisting x1, x2 and x3 with 
MSE, equal to 0.066 with sixteen possible models but the model selected by our 
strategy consists x1 & x2 only with MSE equal to 0.064 with total four possible 
models. 
 
It is thus recommended that Cp criterion may produce better results if applied by 
using our strategy. 

Further research 
Although a verity of variables selection methods is in practice today, there is still 
a plenty of work to be done viewing up the fact we are also on the track of 
improvement, our strategy may be improved by considering the followings  
 

i) Detection of outliers and their removal, prior to applying our technique will 
be made. 

ii) Use mean of present values in place of missing values if they happen to 
be in variables. 

iii) Adjusted R2 may be used rather than R2.  
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